kilobaud

MICROCOMPUTING for business . . . education . . . FUN!

In This Issue:

Microcomputing's Special Report on Video Terminals.

Plus diagnostic aids, computer blackjack and much more.

Low Cost Add-On Storage for Your TRS-80*. In the Size You Want.

When you're ready for add-on disk storage, we're ready for you. Ready with six mini-disk storage systems - 102K bytes to 591 K bytes of additional on-line storage for your TRS-80*.

- Choose either $\mathbf{4 0}$-track TFD-100 ${ }^{\text {TM }}$ drives or 77-track TFD-200 ${ }^{\text {TM }}$ drives.
- One-, two- and three-drive systems immediately available.
- Systems include Percom PATCH PAK \#1 ${ }^{\text {M }}$, on disk, at no extra charge. PATCH PAK \# $1^{\text {TM }}$ de-glitches and upgrades TRSDOS* for 40- and 77-track operation.
- TFD-100 ${ }^{\text {TM }}$ drives accommodate "flippy disks." Store 205K bytes per mini-disk.
- Low prices. A single-drive TFD-100 ${ }^{\top} \mathrm{M}$ costs just \$399. Price includes PATCH PAK \# $1^{\text {TM }}$ disk.
- Enclosures are finished in systemcompatible "Tandy-silver" enamel.

Whether you need a single, 40track TFD-100 ${ }^{\text {TM }}$ add-on or a three-drive add-on with 77 -track TFD-200 ${ }^{\text {M }} \mathrm{s}$, you get more data storage for less money from Percom.

Our TFD-100 ${ }^{\text {TM }}$ drive, for example, lets you store 102.4 K bytes of data on one side of a disk - compared to 80 K bytes on a TRS-80* mini-disk drive and 102.4 K bytes on the other side, too. Something you can't do with a TRS-80* drive. That's almost 205 K bytes per mini-disk.

And the TFD-200 ${ }^{\text {TM }}$ drives provide 197K bytes of on-line storage per drive

- 197K, 394K and 591K bytes for onetwo and three-drive systems.

PATCH PAK \#1 ${ }^{\text {TM }}$, our upgrade program for your TRSDOS*, not only extends TRSDOS* to accommodate 40and 77-track drives, it enhances TRSDOS* in other ways as well. PATCH PAK 1 $^{\text {TM }}$ is supplied with each drive system at no additional charge.

The reason you get more for less from Percom is simple. Peripherals are not a sideline at Percom. Selling disk systems and other peripherals is our main business - the reason you get more engineering, more reliability and more back up support for less money.

In the Product Development Queue . . . a printer interface for using your TRS-80* with any serial printer, and ... the Electric Crayon ${ }^{\text {TN }}$ to map your computer memory onto your color TV screen - for games, animated shows, business displays, graphs, etc. Coming PDQ!

TM TFD-100, TFD-200, PATCH PAK and Electric Crayon are trademarks of PERCOM DATA COMPANY.
*TRS-80 and TRSDOS are trademarks of Tandy Corporation and Radio Shack which have no relationship to PERCOM DATA COMPANY.

PERCOM

PERCOM DATA COMPANY, INC 211 N. KIRBY • GARLAND, TX. • 75042

To order add-on mini-disk storage for your TRS-80*, or request additional literature, call Percom's toll-free number. 1-800-527-1592. For detailed Technical information call (214) 272-3421.
Orders may be paid by check or money order, or charged to Visa or Master Charge credit accounts. Texas residents must add 5% sales tax.
Percom 'peripherals for personal computing'

The Honor Graduate

There's been a lot of talk lately about intelligent terminals with small systems capability. And, it's always the same. The systems which make the grade in performance usually flunk the test in price. At least that was the case until the SuperBrain graduated with the highest PPR (Price/Performance Ratio) in the history of the industry.

For less than $\$ 3,000^{*}$, SuperBrain users get exceptional performance for just a fraction of what they'd expect to pay. Standard features include: two dual-density mini-floppies with 320 K bytes of disk storage, 64 K of RAM to handle even the most sophisticated programs, a CP/M Disk Operating System with a highpowered text editor, assembler and
debugger. And, with SuperBrain's S-100 bus adapter, you can even add a 10 megabyte disk!
More than an intelligent terminal, the SuperBrain outperforms many other systems costing three to five times as much. Endowed with a hefty amount of available software (BASIC, FORTRAN, COBOL), the SuperBrain is ready to take on your toughest assignment. You name it! General Ledger, Accounts Receivable, Payroll, Inventory or Word Processing . . . the SuperBrain handles all of them with ease.

Your operators will praise the SuperBrain's good looks. A full ASCII keyboard with a numeric keypad and function keys. A non-glare, dynamically focused, twelve inch screen. All in an attractive desktop unit weighing less than a standard
office typewriter. Sophisticated users will acclaim SuperBrain's twin Z-80 processors which transfer data to the screen at 38 kilobaud! Interfacing a printer or modem is no problem using SuperBrain's RS232C communications port. But best of all, you won't need a PhD in computer repair to maintain the SuperBrain. Its single board design makes servicing a snap!
So don't be fooled by all the freshman students in the small systems business. Insisí on this year's honor graduate . . . the SuperBrain.

2300 Broad River Road, Columbia, SC 29210 (803) 798-9100 TWX: 810-666-2115

CONTENTS Microcomputing, September 1979

A Look at Terminals. 24
Special report on video terminals. Jim Perry Inventory 28
Nine-operation inventory program. Richard A. Blessing
ON X GOSUB VVVV,TTTT. 32
Metric, English equivalents program. Allan S. Joffe
It's Time for Core 34
A look at core memory in micros. Ron Fracchia
The MM57109 Number Cruncher. 38
57109 hardware/software requirements. Larry Bregolii48
Golden-gas monltoring program. P. Feldman, T. Rugg
The Fourth Faire 52
A visit to the Computer Faire. G. P. Williams
Output for the SWTP Editor-Assembler. 55
Editor or assembler output for TTYs. Marc I. Leavey
Interfacing SOL with a Vista Disk. 56
Implementing a disk system. Fr. Thomas McGaheeThe Failure of a Micro in Business.68
Public education about micros. Terry Kepner
Thoughts on the SWTP System. 70
Putting BASIC in ROM (\#5 in a series). Peter A. Stark2708 EPROM for the S-100.78
EPROM board design and construction. Bill Walters
End Those Terminal Blues. 88
Review of Lear Siegler's ADM-3A. J. Holyoak, R. Wier
Off-the-Shelf Word-Processing System. 92
A money-saving, self-built system. Jim FitzgeraldCatching Bugs with Lights96
Software debugging, hardware-style. Marvin L. De Jong
Make PET Hard Copy Easy 100
Printer interface to PET's IEEE bus. James M. Downey
Apple II High-Resolution Graphics. 104
The lowdown on high resolution. Darrell G. Smith108
Blackjack strategy. Jerry D. Howard
Put Your PET on the Bus. 112
PET meets Forethought's Betsi. Michael Tulloch
Build Your Own TTL Diagnostic Aid. 116
A remedy for sick circuits. Robert J. Stetson
The Best of Both Worlds. 120
Using and expanding the Heath ET-3400. Ron Dalpiaz
Another KIM-1 Expansion. 130
Adding TTL and 24 K to KIM. John M. Blalock
Adult Caloric Requirements. 136
Better living through software. Dr. John R. CameronTRSpeed-up138
Make your Level II the fastest on the block. Scott King
Publisher's Remarks-4, Output from Instant Software, Inc.-7, Computer Clinic-7, Books-12, Contest!-14, New Products-16, Letters-21, Dealer Directory-111, Classifieds-160, Calendar-160

Microcomputing in Italy

While walking through downtown Florence, Sherry spotted a poster on a building wall showing an article on microcomputing in an Italian science magazine. We immediately bought a copy of the magazine and noted that the major distributor of microcomputers in Italy is Homic, out of Milan.
A few days later, when we reached Milan, we took the subway out to the area indicated in the address and eventually found Homic. We were received with enthusiasm, which even included a free lunch . . . not a small matter in Italy. Homic is the importer of the TRS-80, the PET, the SWTP and others. I think Homic is the only microcomputer importer for Italy. There are just a few stores selling microcomputers in Italy, so the field is just starting there.
One result of the visit was our determination to quickly begin translating Instant Software programs into Italian as a way of supporting the sale of microcomputers in Italy. While many Germans are familiar with English, the percentage of Italians who can use English programs is very small. Fortunately, we have an Italian working in Instant Software, Piergiorgio Saluti, from Ascoli Piceno, a small town near San Marino. Giorgio is running
the Instant Software art department, and now is also busy translating both the programs and the instructions for them into Italian. Watch out, Italy!

In addition to the fine article on microcomputers in the science magazine, there have also been excellent articles in the hi-fi magazines and others. Homic is doing a first-rate job of getting microcomputers into the public eye in Italy.

On the other hand, if you think you have trouble with service on your microcomputer, perhaps you can picture the problems in Italy. You don't just mail back a bum unit, not with all the customs paperwork and delays. You have little choice but to sit down and fix it yourself; considering the lack of service information and diagnostic programs, this is a major problem.

In Seine Prices

How expensive can Paris be? Ask Bernard Silverman, the director of marketing for North Star. He innocently asked Sherry and me out to lunch during the Paris microcomputer Expo. The sign by the elevator in the Palais des Congres, where the show was running, indicated that the restaurants were on the 7 th floor. We elevated and walked into the first restaurant we spotted. It

Reader Responsibility

One of your responsibliltes, as a reader of Kilobaud MICROCOMPUTING, is to ald and abet the increasing of circulation and advertising, both of which will bring you the same benefit: a larger and even better magazine. You can help by encouraging your friends to subscribe to Kilobaud MICROCOMPUTING. Remember: Subscriptions are guaranteed-money back If not delighted, so no one can lose. You can also help by tearing out one of the cards just Inside the back cover and circling replies you'd like to see: catalogs, spec sheets, etc. Advertisers put a lot of trust in reader requests for Information. To make it more worth your while to send in the card, a drawing will be held each month and the winner will get a lifetime subscription to Kilobaud MICROCOMPUTING!

This month's winner of a lifetime subscription to Microcomputing is Oliver Hoheisel of EI Paso TX.

looked like a nice one
It was.
The name of the restaurant was L'etoile d'or, "The Golden Star," and it most surely was, at least for the restaurant. The three of us had a salad and a dessert, plus a Perrier and two coffees. The "addition" for this sparse repast-and at the price it could not be considered just a meal-was \$47. What would a full lunch have cost?

In Paris

Left to right in the accompanying photo we see Reinhard Nedela, the European Manager for Kilobaud Microcomputing and Instant Software. Mr. Nedela is based in Markdorf on Bodensee in southern West Germany. He was the man behind the big microcomputer show in Munich last November.

Next is Mr. Pelissolo, the head of computer, electronic and aerospace industries for France. In the center is Rodnay Zaks, the president of Sybex and the organizer of the MICRO/EXPO in Paris. Rodnay is explaining about Microcomputing and Instant Software while I modestly doze off for a few moments. On the right is Sherry Smythe, head of Instant Software.

The Expo this year drew almost 10,000 , and every one of them was a good prospect for most of the exhibitors. This has come to be the top microcomputer exposition in Europe.

Diagnostics Needed

Since most manufacturers seem to feel that their best diag-
recognize ten numbers and perhaps a few letters or words. It could work if it would dependably sort out just the numbers.

How about it?

Making Money

Since my section in the June editorial about making money brought in a great many enthusiastic responses, I'll continue.

The key to making money in our country lies primarily in building your own small business. Oh, a few people have lucked into money. Some have married it (I know of no one who has done this with happy results, and I know chaps who thought they had it made when they married a rich gal). Some have stolen it (and I know one of these all too well). But in the long run, if you want to aim at making more than average money, you want to play the best odds.
How many people get rich working for the government? How many make it working for a big company? How many in education? Virtually none for any of these, if that tells you anything. No, the key to success these days lies in learning some small business and then starting your own.

Drawing on my own experience . . I started out in 1951 writing and publishing a small monthly newsletter for amateur-radio Teletype enthusiasts. That escalated to a column on RTTY in CQ magazine, and that led to my becoming the editor of $C Q$ in 1955. Five years later, $C Q$ made one of the biggest mistakes of their history when they fired me, leaving me with nothing to do but start my own ham magazine: 73. I should have quit $C Q$ at least three years earlier and started a magazine, but it sure is difficult to make a break with that weekly paycheck-isn't it?

Once you know how to start a magazine you know how to generate a valuable property out of virtually nothing . . . for a profitable magazine can bring in well over $\$ 1$ million in a year. A good example of this can be illustrated by the way I started Byte magazine back in 1975.

This Month's Cover

Using double-exposure techniques, photographer Steve Grohe of Boston depicts innovative features of Centronics Data Computer Corp.'s new Model 730 miniprinter. The 50 cps Model 730 features a unique 3-in-1 paper-handling capability and utilizes a heavy-duty free-flight print head. At $\$ 995$ to end users, the Model 730 is available in seven international configurations.

kiccoad MICROCOMPUTING

Publisher/Editor Wayne Green
Executive Vice President Sherry Smythe
Assistant Publisher/Editor Jeffrey D. DeTray
Managing Editor John Barry
Editorial Assistants Dennis Brisson Susan Gross
Administrative Assistant Dotty Gibson
Production Department Manager: Noel R. Self Staff: Robert Drew
James H. Gray II Bruce Hedin Carl Jackson Dion Owens Robin M. Sloan John W. White Typesetting
Barbara J. Latt Sara Bedell Mary Kinzel Holly Walsh
Photography Bill Heydolph Tedd Cluff
Projects Editor Jim Perry
Assoclate Editors
Phll Feldman Rod Hallen Tom Rugg Peter Stark Sherm Wantz Ken WIdelitz
Bookkeeper
Knud E. M. Keller
Marketing/Circulation Mgr. Robert LaPointe
Buik Saies Mgr. Judy Waterman
Asst. Circulation Mgr. Mary Beth Stanek Circulation Pauline Johnstone
Computer Programming Rlchard Dykema
Instant Software Micro Lab
William F. Gollan
Scott Spangenberg Cida Telxeira Palmer T. Wolf Stan Wszola
European Marketing Dir. Reinhard Nedela
Aùstralian Distributor Katherine Thirkell

- Advertising Aline Coutu, Mgr. Bill York Marcia Stone Nancy Ciampa Gaye Halbig Lorl Mugford Rita Rivard application articie.

Manuscripts

Contributions in the form of manuscripts with drawings and/or photographs are weicome and wiil be considered for possibie pubilication. We can assume no responsibility for ioss or damage to any materiai. Piease enclose a seif-addressed envelope with each submission pay ment for the use of any unsolicited ment for the use of any unsolicited material will be made upon accep. tance. All contributions should be diected to the Microcomputing editorial offices. "How to Write for Microcomputing" guidelines are avallabie upon request.

Editorial Offices:

Pine Street
Peterborough NH 03458 Phone: 603-924-3873, 924-3874

Advertising Offices:

Eim Street
Peterborough NH 03458 Phone: 603-924-7138, 924-7139

Circulation Offices:

Eim Street
Peterborough NH 03458
Phone: 603-924-7296

To subscribe, renew or change an address:

Write to Microcomputing, Subscription Department, PO Box 997, Farmingdaie NY 11737. For renewais and changes of address, include the address label from your most recent diess label from your most recent
issue of Microcomputing. For gift issue of Microcomputing. For gift
subscriptions, include your name and address as weil as those of gift reciplents. Postmaster: Send change of address information to Microcomputing, PO Box 997, Farmingdaie NY 11737.

Subscription problem or question:

Write to Microcomputing, Subscription Department, PO Box 997, Farmingdaie NY 11737. Please include an address iabel.

Kilobaud Microcomputing (ISSN $0192-4575$) is published monthiy by 1001001, Inc., Pine St., Peterborough NH 03458. Subscription rates in U.S. are $\$ 18$ for one year and $\$ 45$ for three years. In Canada: $\$ 20$ for one year and $\$ 51$ for three years. In Europe, send 89,-DM in Euroscheck or send credit card information to: Monika Nedeia Markstr. 3, D-7778 Markdorf, W. Germany. South African Distributor: KB many. South African Distributor: KB
Microcomputing, PO Box 782815, Microcomputing, PO Box 782815 ,
Sandton, South Africa 2146. AustraSandton, South Africa 2146. AustraKa: For subscriptions write-
Katherine Thirkell, Sontron instruments, 17 Arawatta St., Carnegie, Vic. 3163 Australia. All other foreign subscriptions are $\$ 23$-one year only surface mail). Second-ciass postage paid at Peterborough NH 03458 and at additional mailing offices. Phone: 603-924-3873. Entire contents copyright 1979 by 1001001 , Inc. No part of this publication may be reprinted or otherwise reproduced without written otherwise reproduced without written
permission from the publisher.

First came the idea. You will do best if you start a business that is in a new field, but one that has great promise of growth. I saw early in 1975 that the Mits Altair computer was starting a revolution, and I felt that a good magazine would be needed to service this field.

In April of that year, I started contacting the editors of comput-er-club newsletters. I asked Hal Chamberlin if he would be interested in my project. No. Bob Albrecht of People's Computer Company also said no. Then Hal Singer turned me down. It was about then that I found Carl Helmers, who was editing and publishing a small newsletter out of Boston.

My plan was to cover simultaneously the three main elements needed to make a magazine successful: You need a continuing source of good articles if you are going to get and hold readers. You need readers if you are going to get and hold advertisers. You need advertisers if you are going to pay for printing and mailing the magazine to the readers. So I had to organize getting the articles, the readers and the advertisers, all at the same time. It takes experience and a lot of push to do this . . . we did it all in five weeks, possibly a world's record!

After signing Helmers on to edit the articles, I designed the letterhead and envelopes, wrote subscription letters, wrote letters for authors telling them what type of articles we were looking for, and then went through every computer-club newsletter I could find for addresses to send my form letters. The name for the magazine came to me one morning during my shower . . . my best thinking time.

I needed a lot more addresses for prospective subscribers than I could find in the club newsletters, so I contacted manufacturers in the field-Scelbi, Godbout, Martin Research and many others -and convinced them to send me their mailing lists. My newsletters to prospective advertisers were sent out, and things were ready for action.

The job of starting the new magazine would have been much more difficult without the facilities I already had for 73 Magazine. This gave me the typesetting, art department, editors, circulation people, bookkeeping, a fulfillment service, an advertis-ing-sales department, all able to work hard on the project. I doubt if there was one person on the 73 staff who did not work hard toward starting Byte.

In no time it was evident that I
had underestimated the market for this new magazine. My original plans for a cautious 2000 print run of a 64 -page magazine gradually grew to the eventual 15,000 printing of a 100 -pager. The ad response was so good that the very first issue was in the black!

In order to back up the publication, I made a personal visit, carrying issue number one with me, to see the major firms in the business at that time. I visited and talked with Mits, Sphere, Southwest Tech and some smaller firms, taking pictures for my editorials as I went.

Everything went very well, with the type of articles I requested coming in from topnotch authors, with subscriptions growing every month and with advertising also growing every month. The magazine was quickly worth well over a half million dollars and looked as if it would pass a million before the end of its first year. (The sudden and astounding loss of the magazine after its fourth issue was a great surprise and blow to me. I'd put my heart and soul into it; it was a part of me. More will be written about this black era when the court battles subside. The people involved have never again been able to look me in the face.)

So there you have a good example of how you can learn a business by working for someone in the field and then, when you know enough to run your own business, break loose and do it. By working with CQ I learned how to edit, how to sell subscriptions, how to sell advertising, how to deal with printers, how to get all of the things done that a magazine needs. Then, when I was free, I had the know-how to start my own magazine . . . and with little money. Very little. It's know-how and determination that count.
Without my experience in publishing I would not have known what type of articles to ask authors to write; I would not have known how to design and have letterhead printed quickly . . . or how to write the letters for articles, for subscriptions, for bulk sales through stores and newsstands and for advertising. I would not have known the people in the field to get all that start-up advertising. We've seen other publishers try to make it in the same field and fail, wasting hundreds of thousands of dollars in the effort, all because they did not have the background I did.

If you are going to think in terms of running your own computer store, just change the words
of my experience slightly and you have a parallel situation. If you are going to make an I/O board for the TRS-80 or some other popular system, you need to know what to do and when. You need to understand advertising where to advertise to reach the customers you need. It is sad to see the hundreds of thousands of dollars that are wasted on advertising every month with poorly designed ads and ads run in the wrong medium. This has had a lot to do with the recent sinking of many of the well-known firms in our field. These firms were run by engineers and technicians, not by marketing-savvy people who could see beyond mere circulation numbers when placing advertising.

By the way, there is a new book that every entrepreneur should read. Let me amend that: It's a book that everyone should read. The book is How to Sell Anything to Anybody by Joe Girard, Warner Books 82-957, \$2.25. It's available from the Book Nook as a public service. Joe is listed in the Guinness Book of World Records as "The World's Greatest Salesman." He tells you how he does it, and there is something there for everyone who is interested in success. The book is sloppily edited, but the ideas are there, and that's what you're after. From that point of view, it is still worth its weight in gold to you.
Thanks for joining me in this editorial; I hope you enjoyed it. I'll be glad to try to answer questions in the magazine if you send them in. My time for personal correspondence is getting tighter and tighter. With your encouragement, I'll write more about the elements of success.

TRS Articles Wanted

We're looking for articles on just about every aspect of the TRS-80, right from the most fundamental to help newcomers to the system to get aboard, on up to material for the strictly technical hobbyists.

We'd like reviews of all of the accessories that are available, either from Radio Shack or from any other source. We'd like to know how they work, what problems you had hooking them up, any modifications or hints you can pass along to those following you down that trail.
All types of software reviews are needed . . . from Radio Shack programs, Instant Software and
(continued on page 22)

Sherry Smythe

Visiting Us

Some visitors find us warm, friendly and accommodating. Others are put off by neglect and suspicion. Well, we've had our share of industrial espionage already, so we're a bit wary. If you'll call us ahead of time and explain who you are and set up an appointment, you'll find the red carpet out. If you drop by unannounced, you'll have to take pot luck. Most of the staff are busier than hell, trying to meet a deadline, so the prospect of dropping everything in midsteam for a surprise visitor is not appealing.

Documentation

The better the documentation accompanying a submitted program, the better the chances of a favorable review. Please do not bother to send in programs that are not thoroughly completed and documented. We haven't time to try to figure out from a program listing what a program is supposed to do.

When you submit a program to any publisher you should include a letter telling the publisher what the program is supposed to do, who will want to buy it and what the benefits are to the customers. Then include operating instructions and any useful data on
to do this work.
If you are fluent in French, German, Swedish, Danish, Finnish, Norwegian, Spanish, Italian, Korean, Chinese, Japanese, etc., please write to me if you would like to do some program translating.

System Conversions

The original authors of programs will be given the right of first refusal on all translations of programs for systems other than originally written, but we would like to cover as many of the popular systems as possible with our programs. If you are interested in tackling system translations, please let us know what two different systems you have.

The pay will be a minimum of $\$ 3$ per hour for your spare time, plus a percentage of the royalty. This percentage will depend on the amount of time and effort you put into the program as compared to the original author. Our goal is fairness. A complex program that can be converted to a second system with a couple hours of work will pull a modest royalty percentage. A difficult conversion could go as high as 50 percent of the royalty.

What systems are of most interest for conversions? Well, the more sales a system has, the more royalties there should be. We do need conversions for Heath, Atari, TI, Apple, PET and others.

Foreign Distribution

The proper support of the microcomputer industry seems to indicate a need for program distribution in every country
where microcomputers are being sold. Thus we want to hear from individuals and organizations interested in distributing Instant Software overseas.

Distribution is already well along in the U.K., Germany and Italy, but we do need help in most other European countries. South Africa seems to be setting up already . . . I wonder if there are any other countries in Africa where there are microcomputers being sold? We are looking for distribution help in Asia and will be visiting Korea, Taiwan, Hong Kong and Japan in October to meet people interested in this.

Please write and let me know what you can do.

Level I

When we found out via a recent Kilobaud Microcomputing reader poll that only 10 percent of the TRS-80 owners were using Level I, we decided to stop worrying about that language. Please submit all programs in Level II. If you also have them in Level I, OK; we'll put that into the package for Level I users, but there will be no more programs published strictly for Level I users.

Incomplete Programs

Please do not send in half-done programs with a note reading, "If you like this I'll finish it." Once you are a famous and very wealthy programmer you may be able to work this way. Some book authors can, once they are well known, but right now only finished programs are acceptable. Once we make you rich as Croseus you can aggravate us and we'll take it. For the time being, please do it our way.

Here is a real brain teaser for all computer clinicians.

A few weeks ago, a most unfortunate and enigmatic thing happened to my Altair 8800A: Smoke started pouring from the power supply board in the area around diodes D9 and D10,
which is right where the ac power cord enters the computer. What is puzzling is that, after immediately turning off the power and carefully examining the abovementioned area, I could find nothing, absolutely nothing, burnt, scorched or otherwise
blackened. Everything appeared exactly as it usually did, except that the smoke had left behind a strong smell of something like burning plastic, which lingered in the computer for about a week. When I turned the computer on again, it worked as if nothing had ever happened. All the power supply diodes checked out all right.

A few more facts: This happened while one lead of the fan was disconnected; inadvertently, I let this unconnected lead touch the Altair case, which resulted in a big spark.

While the smoke was pouring, the front panel LEDs appeared normal. The computer had been
on for about one minute before the smoke started pouring.

As causes, I have so far considered ants, ticks, fleas, spiders and spider webs. However, there was no debris of any kind on the power supply board or under it. Please write as quickly as possible if you have any answers or thoughts on this enigma.

Su-Ming Wu
3486 Saint Susan Place
Los Angeles CA 90066

I have a Data Interface DI 120, Serial No. 1313, line printer on my M6800-based home-brew system,
(continued on page 23)

OHIDSEHENTIFIG'S -on

 SMALL SYSTEMS JOURNAL
Introduction

In this month's edition of the Smail Systems Journal, we shail continue with our detailed description of information-management systems built around OS-DMS and OS-MDMS as designed for 8-inch floppy, Winchester and mini-floppy-based Ohio Scientific computer systems. Beginning with this edition, our discussion will be centered around several types of fixed business systems written around OSDMS and its capabilities. While it is not practical to list all of the possible applications of OS-DMS systems, several are listed below to give the reader a look at typical applications. it should be borne in mind that varlations on these uses are possible.
As mentioned before, information-management systems might be used to maintain house iistings for a smail real estate company. A file that contained a list of houses for saie could be used for a variety of functions. A report for a potential buyer might iist ali new houses in a certain city that have three bedrooms, two baths, and a garage and are also priced between $\$ 40,000$ and $\$ 60,000$. A prospective renter might want to see a listing of all the apartments for rent that allow pets and children. Sales agents could have complete listings showing every house for sale.
A small manufacturer might use information-management systems to keep track of the raw parts inventory. At the end of every week the status of the inventory could be obtained by running a series of reports. A reorder listing wouid list any parts that had a quantity In stock less than the reorder ievei. A complete inventory dump couid be given to workers not having access to the computer. Conditional reports might iist ail Items that were purchased from a particuiar vendor. A finished goods inventory wouid be handled in much the same way. Other applications are office supplies, cleaning suppies and factory supplies inventories.
Information-management systems could easily maintain a mailing list for a medium size mail-order company. The mailing list might be sorted by state, zip or name. The printing could be formatted to fit all types of removable labels. Most companies would have a use for a computerized mailing list. End of year earning records are sent to employees. Notices might be sent to all vendors supplying raw parts to a company.
in conclusion, the capabilities of informatlon-management are iimited oniy by the imagination of the operator.
OS-DMS SYSTEMS DESCRIPTIONS
The Ohio Scientific OS-DMS information-management system consists of six modules which make up a complete business package. These modules may also be used by the end user as stand aione groups of programs for general business applications. These modules are as follows:
Nucleus-which we have covered in our previous issues
Payroll/Personnel-permits retrieval of employee information not relative to payroii, e.g., empioyee's phone number. it aiso can be used to generate payroll and during the running of payroil it automaticaliy maintains an empioyee's gross pay to date, reguiar pay to date, overtime pay to date, commissions to date, other pay to date, F.i.C.A. to date, Federal income Tax to date, State income Tax to date, iocai taxes to date, regular hours and overtime hours to date. Like the other modules, Payroli/Personnel permits easy backup of data, report generation and editing features.
inventory-provides such things as a complete inventory listing conditionai inventory listing, reorder report, stock checking, order entry, shipping update, receiving update, inventory update and editing features.
Accounts Receivables/Payables-permits file maintenance of receivable and payable files; report generation of such things as accounts receivable journal, age analysis report, an accounts payable listing; and editing features
General Ledger-allows detailed entry and maintenance of cash receipts and disbursements as well as printing a journal for adult trail purposes. In addition it prints a posting journal, generates management reports and supplies file maintenance utilities.
Query-allows the typicai office worker to obtain information from the computer without having to program it. By typing in structured English requests, the user wiil obtain answers quickiy. Query maintains a dictionary of fieid iabels, file descriptions and keywords. It has the ability to obtain or change a specific item of information based on up to ten conditions.

Our emphasis in this Issue will be directed toward the accounts receivable operatlon. Throughout the discussion, accounts payable may be thought of in tandem with accounts receivabie because the two systems have a great similarity in their functions: keep track of what is owed. There are definite differences in the systems, but many of the operations in each are perfect paraliels. The differences wiil be denoted where needed.

THE OS-DMS ACCOUNTS RECEIVABLE SYSTEM

The OS-DMS Accounts Receivable System is an informationmanagement package designed to provide the user with specific information showing who has owed him how much money for how long. Through its use, the businessman can control such items as overpayments, COD sales and customer credits. It specifically utilizes an OS-DMS compatible master file along with highly modified OS-DMS utilities for specific tasks. The accessing techniques utilized allow a high degree of expansion and flexibility in the system without reprogramming.
The functions built into the system include an updating program that handles ali the normal data entry, report writers that produce an A / R journal, an age anaiysis, a detailed age analysis, a customer ist, customer statements and master file dumps. Automated creation of the master file is part of the system, as is a backup procedure that makes it easy for the operator to protect the data. An editing program is part of the system to enable quick changes of any item in the A / R master file.
It should be noted that since this system is built on the base OS-DMS data management system, programs in the nucleus of the system may be used to expand on the capabilities listed above. This feature gives the user a great amount of flexibility in the final design of his system.

In the normai office environment, the flow of funds-both incoming and outgoing-is a normal occurrence. Part of this flow is in cash, which generaily signifies the completlon of a transactlon, but part of it is aiso done through credit: delivery of goods or services for the promise of future payment.
Accounts receivable is that portion of financiai record-keeping concerned with how much money a given company is owed, who owes
it the money, and when the debts must be paid.
The OS-DMS accounts receivable system is designed to fit into this office environment in the following manner.
Invoices are sent to purchasers on a regular basis. As they are sent, the person performing the accounts receivable clerical function (the clerk) enters the invoice numbers, dates, general ledger account numbers and amounts of the new invoices on the computer (posts the data) through the console keyboard. In order to enter these invoices, some new customers must ordinarily be put on the computer to accompany the transaction data. This entails entering their names, addresses and other static information into the computer through the same console keyboard. Along with all this billing, of course, payments of previously sent invoices are being received. When these payments come in, they are posted into the proper accounts and erase the applicable records of funds due. The cycle is continuous and, in most situations, smooth in its operation, but peaks will appear in seasonai industries and the like.
All this information being entered into the computer is retained in the equipment for only a short period of time. For future access, the data is stored in individual customer records in an accounts receivable master file on disk (floppy or fixed) held in the disk drive unit(s) of the computer. The data may then be recalled at some future point in time to indicate its presence or be further processed. The process of entering this information also leaves a record for the office personnel to reference. A printed input journal is produced as an audit trail so that both the clerk and the person overseeing the operation of the accounts receivable (the manager) can readily tell what processing has been performed and when it occurred. A typical input journal might look like the following:

ACCOUNTS RECEIVABLE INPUT JOURNAL O1/25/79 8:42

ACTION CUSTOMER INV NUM INV DATE ACCT AMOUNT
NEW CUSTOMER JONES \& JONES CONS. CO $3044501 / 12 / 794010 \quad 3998.50$ NEW CUSTOMER EDWIN A WUAMS \& ASSO $2981501 / 16 / 794010 \quad 407.80$ NEW INVOICE ASSO PRODUCERS INC 30573 01/16/79 $4010 \quad 300.45$ NEW INVOICE ASSO PRODUCERS INC 39887 01/19/79 $4010 \quad 3559.68$ RECEIVE PYMT CAROLINA SHIPPERS COOP INC (CHECK \# 33579) 2000.00 2000.00 APPLIED TO \# 30046-A DATED 01/15/79

RECEIVE PYMT ASSO PRODUCERS INC (CHECK \# 66045) 9500.00 359.00 APPLIED TO \# 2203 DATED 01/15/79
7888.95 APPLIED TO \# 2207 DATED 01/17/79
350.75 APPLIED TO \# 2210 DATED 01/20/79
300.45 APPLIED TO \# 30573 DATED 01/16/79
600.85 APPLIED TO \# 39887 DATED 01/19/79
// END RUN //

Once the invoices have been entered into the computer, they are available for further processing. Payments may be received on them, they may be modified or they may be deleted. They may also be iisted in various formats, used as subject matter for statistical reports, or processed further. The following are some of the products available with this system:

The Accounts Recelvable Journal

This is a report showing the specifics of all invoices for each customer requested. It may be printed on paper or on the console terminal depending on the needs of the user. These needs may be for a billing roster, a picture of the entire receivables situation, or management information about a particular customer. Due to its detailed contents, full file printouts of this can be lengthy and shouid not be printed too frequently.

ACCOUNTS RECEIVABLE JOURNAL

CUSTOMER NAME	INV NUMBER	INV DATE	ACCT \#	AMOUNT
ASSO PRODUCERS INC	39887	01/19/79	4010	2958.83
ASSO PRODUCERS INC	26774	12/05/78	4010	256.57
ASSO PRODUCERS INC	22346	10/12/78	4010	322.46
		CUSTOMER	TOTAL:	3537.86
CAROLINA SHIPPERS	30046-A	01/15/79	4010	451.50
		CUSTOMER	TOTAL:	451.50
JONES \& JONES CONS.	30445	01/12/79	4010	3998.50
JONES \& JONES CONS.	26559	11/20/78	4010	3004.50
		CUSTOMER	TOTAL:	7003.00
E. A. Williams	29815	01/16/79	4010	407.80
		CUSTOMER	TOTAL:	407.80
		GRAND	TOTAL:	11400.16

The Master File Dump

This report prints accounts receivable master file records for historical storage or management information needs. It lists the entire contents of each accounts receivable record requested in a predetermined format. Two routines exist to print this listing-one to print the entire file and one to print selected master records chosen by varied conditions. The full file printout of this can be very lengthy.

OHIO SCIENTIFIC 1333 S. Chillicothe Road • Aurora, Ohio 44202 • (216) 562-3101

The Editing Journal

The program that is used for general-purpose updates in this system prints a journal to document all modifications made to the A / R master file. Not only does this provide protection against accidentally updating the wrong item and not knowing what was destroyed, but it also gives the user a written record of all miscellaneous changes made to the file.
OS-DMS EDITING JOURNAL. FILE NAME: ARMSTO.
DATE: 1/31/79. TIME: 3:48

RECORD \#: 3 FIELD \#: 2 FIELD LABEL: CONTACT OLD: MS GLADYS JONES
NEW: MR HAROLD SMITHERTON
RECORD \#: 1 FIELD \#: 4 FIELD LABEL: STREET
OLD: PO BOX 3847
NEW: 18295 ALLENDALE AVE SW

The Age Analysls Printouts

These runs are useful for both management information and historical purposes. This system provides two types of aged reports-one showing each customer's situation at a glance and the other showing the aging status of each invoice in detail as well as the total customer analysis. These reports give management per sonnel a useful tool with which they may make knowledgeable decislons, since with these reports it is possible to see cash flows, forecast income and interpret figures intelligently.
Our first example is that of a general-purpose age analysis, showing for each customer both the balances outstanding over the different time periods and the percentage of the total balance which are in the given age categories.

> ACCOUNTS RECEIVABLE AGE ANALYSIS

DATE 01/3 1/79

| DATE OI/3 I/79 | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |

The detalled age analysls shows the age status of each involce outstanding as well as the total amount for each customer and the run. In addition, the percentages of the grand total which are found in each age category are indicated at the end of the report.

ACCOUNTS RECEIVABLE DETAILED AGE ANALYSIS

PAGE 1					
CUSTOMER NAMEINVOICE \#	TOTAL BALANCE	0-30 BALANCE	31-60 BALANCE	61-90 BALANCE	OVER-90 BALANCE
ASSOCIATED PRODUCERS INC					
39887	2958.83	2958.83			
26774	256.57		256.57		
22346	322.46				322.46
CUSTOMER TOTAL:	3537.86	2958.83	256.57	0.00	322.46
CAROLINA SHIPPERS COOP INC					
30046-A	451.50	451.50			
CUSTOMER TOTAL:	451.50	451.50	0.00	0.00	0.00
JONES \& JONES CONSTRUCTION CO					
30445	3998.50	3998.50			
26559	3004.50			3004.50	
CUSTOMER TOTAL:	7003.00	3998.50	0.00	3004.50	0.00
EDWIN A WILLIAMS \& ASSOCIATES					
29815	407.80	407.80			
CUSTOMER TOTAL:	407.80	407.80	0.00	0.00	0.00
GRAND TOTALS:	11400.16	7816.63	256.57	3004.50	322.46
PERCENTAGES OF					
GRAND TOTAL:	100.00	68.56	2.25	26.35	2.82

The Accounts Recelvable Statements

These are sent to the customers on a periodic basis to inform them of their current financial positions with us. The accounts receivable journal makes a fine statement journal for this printout, as its contents are the same as those printed on the statement.

OHIO SCIENTIFIC, INC
1333 S. CHILLICOTHE ROAD. AURORA, OHIO 44202
(216) 562-3101

STATEMENT OF ACCOUNT AS OF 1/31/79
TO:
ASSOCIATED PRODUCERS INC
PO BOX 3847
ATLANTA, GA 30306
ATTN: MR H. JOHNSON

INV NUMBER	INV DATE	ACCT \#	AMOUNT
39887	$01 / 19 / 79$	4010	2958.83
26774	$12 / 05 / 78$	4010	256.57
22346	$10 / 12 / 78$	4010	322.46
TOTAL BALANCE DUE:			

\longrightarrow

The Customer Listing

The staff that handles the paperwork always needs to have a ready reference to what items are currently on any given file. For this system, a customer list is the document that shows which customers are presently active and how they may be found most easily.

ACCOUNTS RECEIVABLE CUSTOMER LIST		
DATE 1/31/79		PAGE 1
CUSTOMER NAME	CUSTOMER NUMBER	RECORD NUMBER
ASSOCIATED PRODUCERS INC	1010	
CAROLINA SHIPPERS COOP INC	2350	2
IONES \& JONES CONSTRUCTION CO	3050	3
EDWIN A WILLIAMS \& ASSOCIATES	4003	4

OS-DMS ACCOUNTS RECEIVABLE SYSTEM OVERVIEW

Now that we have presented our various printed products, we shall briefly describe how all the routines that produce these reports are tied together to make a system rather than just a group of programs. The entire serles of operations that goes into coordinating the daily routines of the user must be taken into account, from the building of the file, the data entry and reporting routines right up to the security aspects being taken care of in the backup routines.
The coordination required is centered in a routine generally referred to as the primary menu program. This is the hub of the operations in the system, since it is the first program active in the system and is seen between all the routines performed by the operator. It merely presents a list of available operations the user may select from, and when the selection is made, transfers control to the appropriate routine to perform the task desired. The following is the menu for this system:

OS-DMS ACCOUNTS RECEIVABLES

```
A/R MASTER UPDATE
PRINT A/R JOURNAL
COMPLETE A/R MASTER DUMP
CONDITIONAL A/R MASTER DUMP
A/R MASTER EDIT
PRINT A/R AGE ANALYSIS
PRINT DETAILED A/R AGE ANALYSIS
CREATE NEW A/R MASTER FILE
PRINT CUSTOMER LIST
PRINT CUSTOMER STATEMENTS
BACKUP A/R MASTER FILE
EXIT A/R SYSTEM
```

All normal data entry is made through the selection of item number one. Corrections and adjustments may be made through the selection of item number five. The protection of the data is handled through item number eleven. Item twelve is available so that programmers may exit from the production environment and modify the system when needed.
Differences in the accounts receivables and payables were mentioned at the beginning of this article. As the reader can see, most of the functions performed by this system may be used in either system. The primary differences which may be found lle In the customer statement area. The customer statement indicates the amount of money owed by the customer. Its counterpart, a vendor statement, is printed to indicate to a vendor exactly what items are being paid for with a given remittance being sent to that vendor. The printed format is very similar. Only the logic used to find the amounts is different.

8080/8085 Software Design
Titus, Rony, Larsen, Titus Howard W. Sams \& Co., Inc., Indianapolis IN
Softcover, 334 pp., $\$ 9.50$

When you run across something that appeals to you, it is human nature to want to "pass the word." Six months ago I bought a copy of $8080 / 8085$ Software Design, hoping that it wasn't just another book explaining 8080/ 8085 instructions. I wasn't disappointed. Not only have the authors avoided simply listing the instructions with a brief explanation, they haven't "listed" them at all.

Rather, chapter 1 starts the reader at square one. By assuming that the reader has no familiarity with the two processors, a commonality is established. The registers, flags, status lines and general operation of the device are explained. Also, conventions used throughout the book are established and explained. One commendable convention is the use of both octal and hex formats for op code presentation.
Chapter 2 introduces the basic instructions (data-movement, input/output (I/O), logical and mathematical, and branching and decision-making). Each instruction group is introduced in a logical manner such that all instructions within that group are associated in the reader's mind. For example, all register-to-register movement instructions start with an octal 1 in the op code, and are formatted as 1 DS , where D is the code for the destination register and S is the code for the source register. The destination is always specified first. The effect on the various registers and flags with a group of instructions is explained as appropriate.

Also, the reader is shown how to use some instructions to replace less powerful instructions. For example, LXI H replaces MVI H and MVI L . . . obvious to an experienced programmer, but not to a novice. This replacement technique is not developed in the context of "look at this
neat trick," but rather in the context of helping the reader to logically group the instructions in his/her mind to design programs with the intention of optimizing the number of instructions. In that vein, the authors have included 39 executable programs in chapter 2 as illustrations.

Chapter 3 begins the "software design" aspect of the book in earnest by posing some hypothetical programming goals, then assisting the reader in thinking through to the solution. Flowcharts and diagrams are used to good advantage. This and subsequent chapters are laced with good programs that can be keyed into the reader's machine and run, or incorporated into a system monitor (general-purpose TTY I/O routines, binary-to-ASCII-based hex conversion subroutines, etc.). Chapter 3 concludes discussion of, and example programs using, the basic instructions with a summary of the instruction groups.
Chapter 4 introduces the advanced instructions, then poses examples where one or two instructions can replace many additional instructions and perform the same function. Additionally, the authors introduce a very powerful teaching device in this chapter. The reader is asked to explain, step-by-step, the effect a program has on a register, register pair, flag, etc. The authors then explain the effect, which has the benefit of giving the reader confidence in his/her comprehension of the material and a good insight into how the machine really works.
Now that all 244 of the 8080/ 8085 instructions have been explained, the authors press on to the "meat" of programming in chapter 5 with 28 programs that illustrate multiprecision integer addition, subtraction, multiplication and division. BCD arithmetic is discussed briefly. At the end of this and most other chapters, references are provided, should the reader wish to investigate the subject matter more in depth.
Number-base conversions are
discussed and illustrated in chapter 6; most of the 26 programs are suitable for use in readers' programs. Octal, hex and ASCII coding of both systems are explained very well. One such program is "A Binary-to-ASCIIBased, Octal Conversion Subroutine That Uses a Loop" (a similar program is given for hex). The authors go on to compare this program with a loop to one without a loop-again reinforcing the "software design" aspect of the book.
Chapter 7 wraps up the book with discussion of I/O routines, both accumulator and memorymapped. One point the authors make in this chapter is that hard-ware-related software without a schematic or detailed hardware explanation is useless. So where appropriate, schematics have been included. Programs and schematics cover, among other things, a simple keyboard interface and LED displays, single digit to multiplexed 10 digit.

This book is by far the best 8080/8085 assembly-language software book I have read. The style in which the book is written is very readable and easy to follow. As a testimonial to the efficacy of the book, I wrote a 150 -line monitor for my homebrew 8080 system with only three mistakes-my first attempt at as-sembly-language programming. That's why it has taken me six months to "spread the word" about this book-I'm enjoying using it too much to write about it! The only drawback the book has is something it hasn't-an index of instructions. However, the book is organized in a very logical manner, so it is a simple matter to refer to the ample subject index under the type of instruction being sought. My recommendation to all but the most experienced 8080/8085 assembly-language programmer: Buy the book!

James C. Hassall
Blacksburg VA

Digital Concepts Using Standard Integrated Circuits Richard S. Sandige McGraw-Hill
 New York NY, 1978 $\mathbf{\$ 2 0 . 9 5}$, Hardcover

While written to be used as a text for a first course in digital IC devices, Digital Concepts is adequately written-from the conversational style to the tutoriallike organization and topical pre-sentation-to be used as a selfpaced study guide for anyone with even a rudimentary knowlwith even a rudimentary knowl-
edge of ac and dc circuits. The au-
thor makes an appropriate recommendation that the reader obtain The TTL Data Book For Design Engineers (2nd ed.) from Texas Instruments if the examples are going to be implemented on a breadboard.
Armed with the TI reference, the reader will move from little or quite antiquated knowledge of digital electronics to a current understanding of-and with some low-cost breadboarding, the ability to implement-simple and some not-so-simple multiple-IC circuits.
Sandige has gone far enough in the direction of theory to introduce state diagrams and Kar-naugh-map reduction, but has also devoted enough effort to applications to label most diagrams with specific 74 xx or equivalent IC nomenclature, thus emphasizing the laboratory/breadboard orientation of the book.

The book includes a preface, list of abbreviations, bibliography, answers to (selected) exercises and an almost adequate index. There are also appendices ranging from "preferred" resistance values to the powers of two $\left(2^{n}, 0 \leqslant n \leqslant 20\right)$.

The first chapter is an overview of the rest of the book. The remaining chapters, 2-13, go through the techniques of design and use of ICs through the 555 timer and into a brief exposure to medium- and large-scale ICs such as registers, memories and microprocessors. Some medium-scale ICs are covered in chapters 2-12 (e.g., decoders and data selectors). This seemingly limited topic coverage is one of the strong points of the book: It permits the author to devote more effort to writing in a tutorial style-a stated goal of the book. Specific chapter topics are:

Chapter 2. "Data-Book Information and Breadboarding.' Nuts-and-bolts data-book information is presented to illustrate the range of digital ICs available. The reader is introduced to breadboarding, digital wiring diagrams, data books, IC identification schemes and package styles, and is encouraged to start wiring small digital systems immediately.
Chapter 3. "Commonly Used Number Systems." For the reader with little or limited knowledge of number systems, this chapter will provide a good exposition of the basics of number systems and cover the binary, octal and hexadecimal number systems in particular.
Chapter 4. "Fundamental Digital Concepts." This chapter is a
(continued on page 14)

This is the second newsletter of the EXATRON STRINGY FLOPPY OWNERS ASSOCIATION. We have some exciting things to tell you about this remarkable mass storage subsystem, and about where we are now a few months after the introduction of the TRS-80 Stringy Floppy at the Fourth West Coast Computer Faire.

For new subscribers who didn't see the first newsletter in the August issue, the Stringy Floppy is pictured at the right. Add a flat cable for a connection into the back of the TRS-80, and a small sealed-unit power supply for the AC outlet, and you have the TRS-80 model ESF. It will load a 4 K -byte program into memory in 6 seconds, or a 16 K -byte program in 24 seconds. You can save programs on tape at the same rate. Aside from the speed and convenience, the most remarkable feature of the Stringy Floppy is its extreme reliability. The subsystem is operated entirely by software commands, with no knobs, switches or other physical controls; and because all parts of the system design are to digital standards, it is very very difficult to make it misread or misload. Gordon French, one of the "grand old men" of hobby computing, and a co-founder of the very first computer club-the Homebrew Computer Club-was heard to remark at a recent meeting of a local TRS-80 Users Group: "I've watched the Stringy Floppy demonstrated many times since it was first introduced at the Third Computer Faire back in 1978, and I've never seen it fail to work properly!"

When introduced, the TRS-80 model had only two commands: "@SAVE" and "@LOAD". It was fairly obvious that two other capabilities were needed: multiple files on one wafer, and data files. These were already in preparation at the time. As of this writing they are close to release, but because of the editorial time-lag I can make no positive statements. So. . .use the tollfree number below and give us a call. By the time you read this much more information will be available.

STRINGY FLOPPY FOR THE SS-50

The Exatron Stringy Floppy for 6800 microcomputer systems, most immediately the SWTP, is now up and running. The software is in EPROM, and contains the utilities for I/O and printer as well as the formatting and operating routines. The SS50 has a dual-drive capability, and will support an ACIA on Ports 1 and 2 of the SS-50 bus. Call our toll-free number below for price and delivery information.

EXATRON POLICY

As we told you in the last newsletter, ESFOA is a voluntary informal alliance of enthusiasts; it is independent of the Exatron Corporation. EXATRON is in the business of the design, manufacture, and sale of high quality systems and subsystems for personal and small business microcomputers, and not in the development of commercial software. EXATRON does however support the Exatron Stringy Floppy Owners Association (ESFOA), and will support members who undertake software development projects of general interest to other members.

The Company encourages members of ESFOA to attend workshops and participate in software development projects, and will assist members in the publication and distribution of software of general interest. Much more about this later.

PRODUCT IMPROVEMENT

The firmware operating the Stringy Floppy is in a 2716 EPROM on the PC board. As software and operating capabilities are added to the ESF, they will be made available to ESF owners by exchange of 2716 s . At the appropriate time all sof t ware will be programmed onto

If you have any questions about these products, about Exatron, or about ESFOA, call the HOT LINE. Address letters to ESFOA, 3557 Ryder St., Santa Clara, CA 95051.
Stringy Floppy is a trademark of Exatron Corporation.

masked ROMs, to be made available at modest cost, and the 2716 will then be yours to add to an EPROM board.

FLASH!! - As this article is being put in final form, we have just gotten word that the software for the added capabilities has been written, is being debugged, and is close to release under the moneyback guarantee and full warranty. As you are reading this, the Stringy Floppy has in EPROM the commands to dump complete memory on tape, or to SAVE numbered files from 1 to 9 , or selectively to LOAD a numbered file into memory. ALSO, in RAM, to accompany Level III BASIC, the following: SAVE a BASIC program with Autostart; SAVE a machine language program with or without Autostart: PRINT data on tape; and INPUT data from tape. For complete lastminute information, and to place an order, call us on the toll-free line.

SPECIAL OFFER

As noted at the end of this page, the price of the Stringy Floppy for TRS-80 is $\$ 249.50$. Included in this is a credit for $\$ 50.00$, which you can use in several different ways. These are:

1. G2 Level III BASIC, by Microsoft, distributed by GRT Corporation, for a credit of $\$ 49.50$
2. A year's subscription to Microcomputing, for a credit of $\$ 18.00$
3. Instant Software, by Instant Software Inc., at list price
4. Additional wafers for the ESF, at list price

Not only can you use the toll-free line to keep up to date on product improvement, you can also use it to order your

Stringy Floppy. Be the first in your users group to add this marvelous mass storage capability to your TRS-80. Call 800-538-8559 and place your order now!

PRODUCT AVAILABILITY

Exatron Stringy Floppys and related supplies and equipment are sold only by the manufacturer. This is to keep the cost down-a reasonable goal these days. There are other advantages to the buyer. Since it's a sealed unit, guaranteed to work in your TRS-80, and since there is no learning process, you don't need services normally furnished by your dealer. Most important, product support-delivery, warranty backup, and informationis fast, accurate, and completely up to date. Our toll-free number brings us as close to you as your telephone.

HOW TO ORDER

The Exatron Stringy Floppy for the TRS-80 is assembled and tested, and is covered by a $30-$ day money back guarantee and a one-year full warranty. Within seconds of turning on your TRS80, your ESF is up and running. The ESF is $\$ 249.50$, which includes the $\$ 50.00$ credit described above in the Special Offer. Tell us how you want to use your credit. List price for a box of 10 wafers, $5-\mathrm{ft}, 10-\mathrm{ft}$, or $20-\mathrm{ft}$, is $\$ 20.00$. The BUS-EX, a multiple connector for two or more peripherals, is $\$ 15.00$. All prices include shipping and handling; CA residents add tax. To order fast, call our toll-free number and give us your MasterCharge or Visa number. If you have any questions about the product, call us toll-free.

(from page 12)
more or less classical introduction to Boolean representation, the ANSI and IEC symbols and digital logic gates in general.
Chapter 5. "The Level Method of Analysis." An introduction to the author's preferred method of logic analysis. The level method allows actual voltage levels to be represented along with the logic equations and permits an easier circuit understanding and transition to the breadboard than the more classical methods of chapter 4.
Chapter 6. "Boolean Functions and Reduction Techniques." Kar-naugh-map reduction techniques are presented to enable the reader to obtain a minimum hardware configuration to accomplish a given logic function.

Chapter 7. "Circuit Types and Interfacing." An especially welldone introduction to the often burdensome task of making different families of logic "talk" to each other. Starting with relay logic, the author takes us on a tour of DTL, RTL, TTL, ECL, HINL, CMOS and $I^{2} L$ logic devices.
Chapter 8. "Totem-Pole, Open-Collector and Three-State Outputs." This is a welcome chapter. It covers that often gray area of output type. As has been done several times throughout the book, the reasons why each type of output exists are included with the description of the output.

Chapter 9. "Code Converters, 7-Segment Displays, MSI Data Selectors and MSI Decoders." Several popular types of displays are presented. Means of code conversion are discussed within specific applications, making them especially easy to follow and remember.
Chapter 10. "EXCLUSIVEOR Gates and Binary Addition Circuits." MSI packages for XOR and full adders are presented in the context of useful applications. These are then used to design a simple arithmetic logic unit (ALU) capable of adding and subtracting.

Chapter 11. "Latches and FlipFlops." RS and gated latches, master-slave and edge-triggered flip-flops and a variety of frequently encountered flip-flop types are presented. Flip-flop types include RS (called by the
author S-R, but who's perfect?), D, JK and T. Making one type of flip-flop from another is covered in enough detail to relieve most readers of having to suspend a 2 AM project just because the ol' IC collection is out of a particular flavor of flip-flop.
Chapter 12. "Basic Sequential Logic Analysis and Design Techniques, Counters and Controllers." Small- and medium-scale digital devices are used to implement a range of operations.
Chapter 13. "Additional Integrated Circuits." The ubiquitous 555 timer IC is covered in some detail, and MSI registers (the 74194, in particular), memories (8111-2 RAM and 1702A EPROM) and LSI microprocessors (8080 and 6800) are briefly sketched.
Chapters 2-13 have review exercises, several of which have their answers at the end of the book.

The style of presentation is almost Socratic. Following an orientation to a new topic, the topic is explored via examples that are of a question-then-answer nature. Indentation enables the reader to distinguish examples from regular text. As does any book, Digital Concepts has some shortcomings: The index is too brief for an introductory text (e.g., try to find switch debouncing-it is there, if you want to search the index linearly, under "contact-bounceeliminator'"), and while chapters do start with a statement of their goals, they have no summaries. Similarly, there is no index by IC number. Overall, though, the shortcomings are small compared to the book's strong points. The book will make a welcome addition to both the beginner's and the experienced reader's library.

Dr. Douglas H. Haden
 Mesilla Park NM

Starting and Managing Your Own Engineering Practice John A. Kuecken
 Van Nostrand Reinhold Company New York NY, 1979 \$12.95, Hardcover

Don't let the title of this book make you think it is not for you. Software engineering is extensively discussed, and much of the advice given applies to anyone in a self-employed status: engineer, programmer, one-man service bureau or otherwise.
In the June 1979 issue of Microcomputing, Thomas Laich didn't speak too highly of The Datasearch Guide to Low Capital, Startup Computer Businesses. Perhaps this is the book he should
have read, although even this small volume will not tell you what to do in your computer business. This book will give you guidance and advice that will help you decide if the time is right, enough funds are available and if you have the makings of a successful self-employed entrepreneur.
"Successful" can mean different things to different people. I think I am qualified to judge this work because I have been selfemployed for just under two years, and the pangs of startup are still fresh in my mind. The author, John Kuecken, has been successful for many years, so can speak with real authority.
This he does well, in an amusing style. His tone is sufficiently pessimistic so that you are not misled into an unsupported belief that you will become a millionaire overnight. In fact, his pessimism extends to the prediction that it will take you three years to break even, and six years to establish an income equal to what you would have if you had stayed employed in a comfortable, stifling job. In our dynamic, expanding field, these predictions are a little too severe, but do serve to warn you of the effects of lean years to come.

The topics covered are detailed adequately, but some items of information a beginning entrepreneur will need are totally ignored. In mentioning these, Kuecken states, "There are a number of textbooks on the market. . . . but fails to include a bibliography to help you find them. This is the book's weakest point. It is devoid of references to any other publications.
But the friendly, fatherly advice included makes the volume more than worth its modest price
such items of wisdom as, "The consultant is of value only so long as he is ahead of the state of the art," and "A mediocre solution which departs little from what the client is doing now is often better received." Taken out of context, these statements may seem to be in conflict, but they exemplify the type of priceless
guidance that is included in this work.

The author repeatedly leads you into the kind of real-life situations you will encounter in dealing with a variety of customers, and shows you the most effective approach to the solution of their problems. Application of the most exotic or advanced technology is not always the answer.
This advisory tone is followed throughout the book. Beginning with an attempt to define "professional" (impossible!), the author guides you in establishing an office (initially in your home, he recommends), finding clients, funding your operation, selecting equipment and personnel and making written and verbal presentations.
Several of his topics are covered superbly; others are barely mentioned. In the latter category are proposal and inquiry writing. However, these subjects are proper for an entire volume each, so you can't expect this book to go into too much detail. And it doesn't - which makes the lack of references a serious omission.

On the bright side, the guidance that is in the book is all pertinent and valuable, and I certainly intend to apply some of it to my own business. First, 1 am going to follow Kuecken's advice and specifications and prepare a brochure explaining the facilities and accomplishments of my business -something that had not yet occurred to me to do. I can't follow his advice on the selection of a secretary because I'd rather have the blonde with blue eyes than the one who knows what LSI means.

John Kuecken states that " a programmable computer is nearly a must," which hits us right where we live. But, of course, a computer is not everything you need to establish your own business. Studying his book will help you decide if you have what else it takes. When you get to the last chapter, the author asks, "Do you really want to do this?" He and I both suggest that if it is at all possible, do it!

Ken Barbier
Borrego Kprings CA

Contest:

Each month, our readers vote one article as the best of the issue. Winner receives $\$ 100$.

Voted best article for June 1979 was "Monitor" (page 26) by Rod Hallen. Congratulations, Rod.
We also draw from among the votes to choose a winner of a Book Nook book. . . the winner is Alex R. Shevekov of Sunnyvale CA.

Both sidesnow

North Star Announces -

Double Density $\times 2$ Sides $=$ Quad Capacity!
The North Star Horizon now delivers quad capacity by using two-sided recording on our new mini drives! That's 360,000 bytes per diskette! A four drive North Star system accesses over 1.4 megabytes of information on-line! Think of the application flexibility that so much information storage can give you!
North Star has quadrupled the disk capacity of the Horizon computer but prices have increased a modest 15 percent. On a doliar per byte basis, that's a bargain that is hard to beat!
The proven North Star disk controller was originally designed to accommodate the two-sided drives. North Star DOS and BASIC are upgraded to handle the new capacity, yet still run existing programs with little or no change. Of course, single sided diskettes are compatible with the new disk system.

North Star Horizon Computer Prices (with 32K RAM), assembled, burned-in and tested:

Horizon-1-32K-Q	$\$ 2349$
Horizon-2-32K-Q	$\$ 2999$
Horizon-1-32K-D	$\$ 2099$
Horizon-2-32K-D	$\$ 2549$

Get both sides now! Quad capacity is available from your North Star dealer.

North Star Computers
2547 Ninth Street
Berkeley, CA 94710
(415) 549-0858 TWX/Telex 910-366-7001

Edited by Dennis Brisson

Single- and Double-Density Drives
The LFD-800 and LFD-1000 have been added to the line of LFD mini-disk systems for 6800/6809 computers by Percom Data Company, 211 N. Kirby, Garland TX 75042. The LFD-800 stores 200 K bytes in single-density format on 77 tracks and is available in one-, two- and threedrive configurations. The LFD 1000 is a dual-drive system that stores 400 K bytes per disk -800 K bytes per system-in double-density format on 77 -track disks.

A system is supplied complete with an SS-50 bus controller/interface PC card, an operating system on EPROM, an operator's manual and an interconnecting cable. The LFD-400/800 controller/interface accommodates up to three drives, and the LFD-1000 controller/interface accommodates either one or two LFD-1000 dual-drive systems.

In addition to Minidos-Plusx, the EPROM operating system supplied with each drive system, Percom also offers two advanced operating systems, Index and CP/68, for use with LFD drive systems. The operator's manual describes each system component and includes operation, service and maintenance procedures for the drive.

The two-drive LFD-1000 costs \$2495, while the four-drive LFD-1000 costs \$4950. Prices for the LFD-800 are: one-drive, \$895.95; two-drive, \$1549.95; and three-drive, $\$ 2195.95$. Texas residents, add 5 percent sales tax.

Reader Service number P59.

Quadruple Storage

New System 8813 s are now optionally available with four times the storage capacity of the standard unit. Instead of 90,000 characters of storage per diskette, PolyMorphic customers now may choose to quadruple storage to 360,000 characters per diskette. The fourfold increase in diskette capacity is made possible by dou-ble-sided disk drives and doubledensity recording. While storage increases fourfold, retrieval time decreases by a factor of four due to the Z-80 disk controller and track buffering.

These new $51 / 4$ inch disk drives are available as an option with the System 8813; a three-drive 8813 may now support more than one megabyte of storage.

PolyMorphic Systems, 460 Ward Drive, Santa Barbara CA 93111. Reader Service number P4.

TRS-80 Model II

Radio Shack's new TRS-80 Model II Microcomputer System is designed to meet the needs of many users for more data storage, greater versatility and higher computing speed. The new computer has been primarily designed for the small-business application market and it can perform as a general-purpose data-processing

The LFD-800 and the LFD-1000.

Model II microcomputer with line printer, external disk system and system desk.
machine, an intelligent terminal or a word processor. Software is immediately available for general ledger, accounts receivable, inventory control, mailing-list management and payroll.

The TRS-80 Model II is not intended to replace or obsolete Model I, according to Radio Shack, but to provide capabilities that begin where the original TRS-80 approaches its upper limits. It operates at twice the speed of the original TRS-80. In addition to either 32 or 64 K characters (bytes) of internal RAM, Model II has one built-in 8 inch floppy disk that stores an additional onehalf million bytes, including the Disk Operating System. It can be expanded to a four disk system for up to two-million bytes of storage.

Model II has a built-in 12 inch high-resolution video monitor that displays 24 lines of 80 normal characters or 40 expanded characters. It features upper and lowercase letters. The 76-key keyboard, with $10-\mathrm{key}$ numeric keypad, includes advanced functions such as Control, Escape, Caps,

Hold, Repeat and two softwareprogrammable Special Function keys. The keyboard is detachable and movable to allow more convenient data entry.
An enhanced Level 111 version of the TRS-80's popular Level II BASIC language and TRSDOS operating system are automatically loaded in memory when the machine is turned on. In addition, each time the computer is turned on, it thoroughly tests itself to ensure proper operation. The program can appear immediately without any intermediate steps or questions to answer. Direct memory access allows Model II to continue processing during disk transfer operations. All input/output operations are vec-tor-interrupt driven. Model II is priced from $\$ 3450$ for the 32 K one-disk system.

Radio Shack, 1300 One Tandy Center, Fort Worth TX 76102. Reader Service number R17.

System 8813 with double-density mini-diskettes.

Informer 3.
and Code Breaker are three new educational games now available for the Apple, PET or TRS-80 Level II from Program Design, Inc., 11 Idar Court, Greenwich CT 06830.

Memory Builder is a Concen-tration-type game that helps kids improve memory and attention span. Story Builder writes short stories with the child to help improve grammar and vocabulary. Code Breaker gives scrambled messages for players to decode and improves basic writing skills (not available for the TRS-80 Level II). All courses are \$13.50.

One additional game, Morse Code, is for the PET only. It turns the PET into a Morse code sounder and gives players practice in decoding messages. It comes with a plug for the computer; the user supplies an inexpensive 6 -volt buzzer. Price is \$14.95.

Reader Service number P61.

Business System

Informer 3's hardware consists of a Z-80 microprocessor, 48 K of RAM, two RS-232 serial interface ports, one parallel interface port, 2K PROM monitor, 8 inch floppy disk and a 24×80 character CRT terminal. Software includes floppy BASIC (an extended disk BASIC), diagnostics and basic utilities, which include
file copy and disk copy for either single- or multiple-drive systems.

Present business software includes Inventory Management, Payroll, Accounts Payable and Receivable, Word Processing, Customer Mailing List, General Ledger, Program Development and others. The system sells for less than $\$ 4000$.

Digital Sport Systems, 7th and Elm Streets, West Liberty IA 52776. Reader Service number D58.

X, Y Genesis

X, y Genesis, the first in a series of programmer's aids for the Apple II computer, is a set of Applesoft II BASIC subroutines that helps place points, lines, shapes and labeled x and y axes on the high-resolution graphics screen. The full capabilities of the screen can be realized by incorporating plotting areas smaller than the full screen or placing labels on the screen. The plotting subroutines catch situations in which a drawing goes beyond the edge of a defined plotting area. When the drawing reenters the area, the plotting recommences at the edge.
X, y Genesis does the work and allows a programmer to think in terms of a finished high-resolution screen rather than the techniques for plotting such a screen.

The PE Disk System 4.

This system keeps your BASIC programming short and simple; a programmer can see a simple graph minutes after an idea has occurred.

Other programs included in the system allow the subroutines to be added to an existing program and help create tables of high-resolution shapes. A shape table that includes all the keyboard characters plus some special symbols and demonstration programs is also available.
X, y Genesis was designed to be used on an installation consisting of at least a 32 K Apple II computer with an Applesoft II firmware card and a disk drive. Price is $\$ 99.95$.

Futureworld, 2514 University Drive, Durham NC 27707. Reader Service number F19.

One Megabyte Floppy for PET

The PE Disk System 4 is a fullsize 8 inch floppy disk/memory expansion system for the Commodore PET computer. Each 8 inch standard disk drive provides 250 K bytes totaling 1 megabyte of on-line mass storage when the system is expanded to a maximum of four drives. The PE Disk System 4 includes a built-in memory expansion in the form of an S-100 bus adapter and a 5 -slot S-100 motherboard. S-100 memory and peripherals can be in-

X, y Genesis creates display on Apple II.

The LP-80.
stantly interfaced to the PET
The PE Disk System 4 floppy disk is fully IBM 3740 compatible allowing data exchange between other computers. The PE Disk System 4 comes complete with KM^{3}, which allows the user to LOAD, RUN, SAVE and UPDATE programs or data directly or under software control. New release KM^{3} allows the user to PRINT, INPUT, OPEN and CLOSE data files directly or under software control.
The PE Disk connects to the PET memory expansion connector, a simple plug-in. With 5-slot S-100 motherboard and expansion chassis and a single 8 inch disk drive, it costs \$1495. Additional disk drives are available for $\$ 995$.

CGRS Microtech, PO Box 368 , Southampton PA 18966. Reader Service number C116.

80-Column Printer

The Super Brain Model LP-80 is a bidirectional, dot matrix impact printer with a print head designed for 100 percent duty operation, assuring a print life that exceeds 100 million characters. The precision sprocket-feed mechanism permits printing forms from $41 / 2$ to $91 / 2$ inches wide. A 96 ASCII character set prints in upper and lowercase with the added capability of producing doublewidth fonts in boldface. The vertical format unit provides preprogrammed/programmable tab positions, top of form and bottom of form for complete formatting capabilities.

This 80 -column printer provides quiet operation, making it suitable for use in offices, classrooms and homes. Specifications include $125 \mathrm{cps}, 60$ lines per minute, paper loading from bottom or rear and Centronics-compatible, parallel interface. Price is $\$ 985$.
Super Brain, Inc., PO Box 403, Los Angeles CA 90073. Reader Service number S104.

We're about to make a new name for ourselves.

Not that the old one was so bad. As Ithaca Audio, we've made quite a name for ourselves. As the source for CPU, memory, video display and disk controller boards to upgrade other makers' mainframes and peripherals. The company that makes those neat little RAM expansion kits. And the folks behind the world's only Z-80 Pascal compiler.

But as much as we've enjoyed improving other people's equipment, we've been quietly moving towards larger endeavors, with a lot of encouragement from our customers. Listening to people's problems, as well as their needs. And, as a prime mover behind the IEEE S-100 Bus Standard, answering some really knotty questions.

One of the results is our new identity. And our first new product: the Intersystems DPS-1. An IEEE S-100 compatible mainframe with features that live up to its looks. Dependable operation to 4 MHz . Twenty-card capacity. A modular power
supply. And something no one else has -built-in breakpoints to give you a faster, more powerful tool for testing software as well as hardware. Directly accessible from an easy-to-use front panel that's as reliable as it is functional. In short, an intelligentlydesigned computer for the intelligent user.

There's a lot more to Intersystems. In hardware. And software. All available through the nationwide dealer network we're now assembling.

You can watch this magazine for updates. Or contact us directly for straight, friendly answers and detailed information from key staff people. Just the way you always have. Because even though we're making a new name for ourselves, we'll never forget who made it possible.

Cunterasystramas

Ithaca Intersystems Inc.
1650 Hanshaw Road/P. O. Box 91 Ithaca, NY 14850/607-257-0190

Qume printer cut sheet feeder.

Cut Sheet Feeder
for Qume Printers
A cut sheet (single sheet) feeder for the Qume Sprint 5 daisywheel terminal permits the automatic feeding of up to 200 sheets of 20 pound paper. The unit is lightweight (under 9 pounds) and mounts in the same manner as a conventional forms tractor.

The cut sheet feeder can be easily retrofitted to units already in the field. The unit is interfaced via two intermediate plugs and can be installed in just a few minutes. No separate electrical interface is required.
The cut sheet feeder can handle paper widths of $51 / 2$ to 12 inches and lengths of $31 / 2$ to 14 inches. Paper out or paper jam are indicated by both visible and audible signals. It is possible to begin printing on the very top of the page to the very bottom of the page. Price is $\$ 1390$.
COMPUTER TEXTile, 10960 Wilshire Blvd., \#1504, Los Angeles CA 90024. Reader Service number C149.

A/D Converter Board

The S-100 A/D board from Tecmar, Inc., 23414 Greenlawn Ave., Cleveland OH 44122, is designed for applications requiring high-speed accurate analog-todigital conversion including realtime applications. This board interfaces the analogic MP 6812 complete data acquisition system to the $\mathrm{S}-100$ bus. It accepts 16 sin-gle-ended inputs and can be used for analog-to-digital conversion for data throughputs up to 30 kHz with 12 -bit accuracy and linearity.
The board also provides MUX and sample-hold dynamics and provides two's complement rightjustified outputs. The input ranges are $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0$ to +10 V or 0 to +5 V . The board may be strapped to act as an I/O device (requiring four I/O ports)
or to act as a memory-mapped device (requiring four memory locations). Wire-wrap space is provided on the board.

Reader Service number T68.

Interface Card

The COM-412 is a universal receiver and transmitter that performs serial-to-parallel conversions to interface microcomputers with conventional communications equipment. The card provides the circuitry necessary to build computer peripheral controllers, point of sale systems, data acquisition systems, word processors, etc.

This card provides CMOS inputs for TTL and CMOS compatibility as well as low-power consumption. It also features programmable baud rates and data formats. Price is $\$ 185$.

Giuli Microprocessing, Inc., PO Box 23100, San Jose CA 95153. Reader Service number G32.

Statistics Package

The STATPAK-80 statistics package offers sophisticated statistical manipulation without requiring previous high-level statistical or programming knowledge. The system eliminates the data

The COM-412.

pre-evaluation often required in existing statistics packages. The STATPAK-80 library contains 35 major functions.

STATPAK-80 is compatible with Microsoft BASIC. STAT-PAK-80 modules can be interfaced with user software.

Northwest Analytical, PO Box 14430, Portland OR 97214. Reader Service number N25.

Tractor-Feed, Impact Printer

The Model 440 Paper Tiger is a versatile, low-cost impact printer that has software-selectable character sizes, full upper and lowercase 96 -character ASCII set, 80 -and 132 -column formats and the smallest footprint in the industry.

The tractor-feed Paper Tiger combines compactness, flexibility and performance to offer many standard features considered to be extra cost options with other printers. Price is $\$ 995$.

Integral Data Systems, Inc., 14 Tech Circle, Natick MA 01760. Reader Service number 135.

TRS-80 Encryption Device

Cryptext is a hardware encryption device designed to plug directly into the back of the TRS-80 or into the expansion interface
via an optional cable. The Cryptext device allows business users and computer hobbyists to quickly secure virtually any data, including inventory and financial data, technical and proprietary information, graphics, programs or text. The encrypted information can be stored on cassette tapes or on disks, secure against unauthorized access.
Used with a modem, Cryptext allows data or messages to be transmitted by telephone or other communication channels in complete privacy. Other uses include generating pseudorandom numbers for games or scientific programs.
To decode Cryptext-secured data, four elements are essential: the encrypted data, the Cryptext unit, the software and the correct user-supplied key. The lack of any of these elements prevents access to the original data. Data throughput is greater than 15 K bytes/second and power consumption is less than 100 milliwatts.

Cryptext is permanently encased in super-tough space-age epoxy and, slightly larger than a cigarette package, it slips easily into pocket or briefcase. It is supplied with demonstration soft ware and user-oriented documentation. Price is less than $\$ 300$, with optional cable and additional tape or disk software available for an extra charge.

Cryptext Corp., PO Box 425, Northgate Station, Seattle WA 98125. Reader Service number C148.

Global

Global-A Database Management System is a comprehensive and versatile user-oriented database management system for database creation and list maintenance. It runs under CP/M and CBASIC2 on a microcomputer system in 40 K RAM. This versa-
(continued on page 23)

S-100 A/D board.

Paper Tiger.
"Banner" Headline

I found several minor errors in Jonathan Rotenberg's super "Ultra Banner'" program (March 1979, p. 90). The corrections concern the matrix codes for $<$ and $>$, and [and], which are reversed. The correct matrix codes are show in Table 1.

I also found that the " is not defined. Its matrix code is ,, BBB where the Bs are blanks. This code goes in line 20 after the fourth comma and before the first asterisk.

Saul G. Levy Tucson AZ

These bugs are corrected as Mr. Levy has suggested. I realized after the March issue came out that I had sent in a version of "Ultra Banner'" that was slightly older than the current one. The only effect the mistakes will have is to cause the $\rangle,<,\lceil$,$\rceil and " t o$ be incorrectly printed. Most people don't seem to care very much about obscure punctuation, so few seem to have noticed.

One other correction: Line 240 is completely extraneous and can be deleted. This shouldn't affect operation, other than taking up a few more bytes of memory, unless the program is used at least 100 times consecutively.

I have already processed at least 100 letters and phone calls with questions about "Ultra Banner." Four out of every five of these inquiries are the result of inquirers' typing errors.

People should verify their typing before contacting me. In particular, lines 20-80 must be typed exactly as shown (or letters will appear mutilated), and Vs and Ys must not be confused in lines $330-420$ or the program won't run.

I am happy to answer letters and calls to help people with their
programming, but it is a real hassle when everybody calls and writes, when most don't need to.

One last point: "Ultra Banner" will run on any BASICequipped computer as long as the computer has string-handling functions. Some versions of $B A$ SIC require a little more modification to the program, however.

Jonathan Rotenberg Boston MA

HUH Update from HUH

Just a quick note concerning Rod Hallen's review ("HUH?", July 1979, page 40) of our 8100, TRS-80 to S-100 bus adapter.

First, Rod states that his VIO-C "won't find phase I anywhere on the bus." This is certainly not true. Phase I and phase 2 are definitely on the bus and are fully implemented by the 8100 .

The relocated version of CP/M that Rod mentions is now available for the Thinker Toys/Morrow Discus 1 system. Contact Thinker Toys, 5221 Central Ave., Richmond CA 94804, (415) 5242101, for more information.

Also, Rod mentions that an enclosure will be available for the 8100 from another manufacturer. I am pleased to announce that this too is now available, from Integrand, 8474 Ave. 296, Visalia CA 93277, (209) 733-9288. The enclosure alone sells for $\$ 125$, or is available with a power supply and fan for $\$ 185$ (the perfect complement to the 8100).

That's it for now.
Mark Garetz
HUH Electronics San Mateo CA

Making Mods

I enjoyed Allan Domuret's in-

LINE 40, AT END IS $8 \&!\& 8$ CHANGE THIS TO \#,0,\# LINE 50, AT BEGINNING IS \#,0,\# CHANGE THIS TO $8 \&!\& 8$ LINE 70, AT BEGINNING IS ?!!!? CHANGE THIS TO ?000? LINE 80, AT BEGINNING IS ?000? CHANGE THIS TO ?!!!?

Table 1.
formative June 1979 article, "TRS-80/Selectric Word Processor," and agree with his assessment of the utility of such processors as the Electric Pencil.

In the article he states that unless modified internally "The TRS-80 is . . . deficient because of its uppercase-only capability." Actually, this is partially incorrect. The TRS-80 will print lowercase letters on the Radio Shack (Centronics) Quick Printer when the letters are entered from the keyboard with the shift key depressed, even though the letter is still displayed uppercase on the TV monitor. TRS-80 owners lacking the Quick Printer can demonstrate this lowercase capability by the command PRINT ASC(A). If A is entered without a shift, the computer prints 65 , the ASCII code for uppercase A. If A is entered while the shift key is pressed, 97, the ASCII code for lowercase A, is printed, and so on for the other letters.

It would be useful if this lowercase ability could be translated into compatibility with word-processor programs like the Electric Pencil by appropriate software or printer hardware alone. I for one am loath to make internal hardware changes in the TRS- 80 for fear that they may introduce unanticipated incompatibility problems in the currently available system and in auxiliary items that Radio Shack will be introducing in the future. This is not an idle concern. For example, when Radio Shack recently introduced buffering in the cable between the keyboard and the expansion interface, they later found that it made their screen printer inoperative, and this in turn necessitated still further cabling modifications of customers' units.

Peter Mazur Oak Ridge TN

Whose Serve?

In the March 1979 issue of Microcomputing, you printed a letter from me regarding the possibility of starting a hobbyistoriented service bureau. That letter was inspired by Bernard Fehringer's article in the December 1978 issue (p. 30).

Briefly, such a service bureau would provide such services as copying between various formats of cassette, paper tape and other media; printing program listings; assembling programs; and so on.

We prepared a questionnaire in order to find out what people wanted, and these are the results. Eleven people out of about 200
filled out a questionnaire at a computer-club meeting. We left several questionnaires at three computer stores, and apparently nobody filled any out at any of the stores. The letter in Microcomputing elicited two responses. The questionnaire was published in the Sol Users Group newsletter, and we got three responses from that.

We have concluded that the demand for these services is not nearly enough for us to be able to buy the required computer equipment. Therefore, at least for now, we will not be starting a hobbyist service bureau.

We would like to thank those who filled out our questionnaire or responded to our letter.

Jim Howell
 San Jose CA

From 1710 to 1810

I would appreciate it if you could mention that changing line 430 on page 26 of "Monitor" (June 1979 Microcomputing) from GOSUB 1710 to GOSUB 1810 will double the speed of the DUMP routine.

Rod Hallen
Tombstone $A Z$

A First

As a subscriber, avid reader and promoter of Microcomputing, I want to express my appreciation for the excellent article on Technico's Super Starter Kit by Mr. Mataka (July 1979, p. 90).

I have had my Technico TK218 K TMS 9900 system with 32 K of memory for over a year, and this is the first such article of which I am aware to appear in any of the many computer magazines to which I subscribe.

Albert H. Brewster Jr. Norman OK

Symbolism

Microcomputing for business education . . FUN! Well, I'm not having any fun tonight! The reason for my less-than-rosy outlook is a recurrent difficulty 1 have been having in trying to implement published program material on my computer system. I have recently assembled an HII computer system with dual disk drive mass storage unit, which, as you may know, comes with Benton Harbor BASIC. Perhaps it is
obvious that all BASICs are not the same; there are subtle variations between Mits BASIC, TRS-80 BASIC and probably PET BASIC. What with additional confusion between regular BASIC, Extended BASIC and/or Level I and Level II BASIC, it is virtually impossible to take a published program and easily implement it on a new system.
I think that the editors of microcomputing journals could do computer enthusiasts everywhere a lot of good by taking the time to have unusual symbols and functions defined within the articles referring to the programs. What is an unusual symbol? Any symbol that is not part of the symbols originally defined as part of Dartmouth BASIC (that is, the BASIC usually taught in courses) ought to be defined in the article. I'm certain that requiring such definition will take authors a little extra time, but what the heck. The amount of time saved in implementing programs will be much greater in comparison, and that should mean more fun for everyone!

Dr. Vahn A. Lewis Texas Medical Center Houston TX

Right, Doc! There is a need for an article (or a series) on the differences in BASICs, perhaps with a chart. This would help programmers who wanted to change programs from one system to another. Look at the difficulty people have been having in rewriting the Osborne Wang BASIC programs into TRS-80readable programs. Some people have been spending months at this and, as far as I know, only one firm has so far managed the translation with success. Once we have a way of making simple translations of programs from one popular system to another, we'll suddenly have a whole lot more programs available. Wayne

Tape Is Tape

What in the world is so hard about copying programs from tape? I'm only a 13 -year-old computer freak, and could be ignorant about such things as register changing and self-modifying code, but I still think that too much hullabaloo is going on. No matter what "sophisticated methods" there are to protect tape files, a tape is a tape, right? Computer enthusiasts (like myself) seem to have forgotten that
what can be done simply digitally can probably also be done by analog (analogically?)!

Making it impossible to list programs or modify them simply hinders the faithful user, not the nasty copier. You must be laughing; I know I would be too, except that I subscribed to Popular Electronics (nothing compared to Microcomputing, of course) and once was somewhat of an audiophile. Even though I am fully into microcomputing now, I still haven't forgotten my years in audio.

I must stress that I am against the copying of programs (to give away), and have never given away any of my commercially bought programs or taken any copied commercial programs. However, there has been-for years-hardware that would copy any data, program or whatnot from one tape to another, despite software "protection." Ever heard of Pioneer?

Mits Hadeishi
 (that is my real name)

 Los Angeles CA
ISI Booster

I noted with interest Wayne's comments in the July issue about the guy who wouldn't go for Instant Software's deal. I believe you have a lot to offer, and I speak from trying to sell business software on a custom basis. I am with ISI all the way, have submitted a couple of programs, and there will be more. I can not think of a better deal for the independent programmer working out of his home with his own equipment and setting his own hours. Keep up the good work. Distribute those things by the thousands, at $\$ 5$ or $\$ 10$ apiece, and we'll all be rich.

Ernie Brooner
 Lakeside MT

Success

Your column concerning "Getting the Job" in the June 1979 Publisher's Remarks (p. 24) interested me immensely. Yes, please continue your exposé into the secrets of success. Although experience is the best teacher, I am still curious as to what you learned in your experiences. Considering that I am a high-school senior without a decided destination of education, the subject may guide me in the right direction. Yes, I would like to know
your secrets of success that are obvious to the vigilant. Incidentally, what prompted you to write such a column?

Ken Rubotzky Barrington RI

Well, Ken, I got sucked into the college situation like everyone else-it was the thing to do. I wasted four years learning very little, and I'm angry about it. Since then I've thought a lot about what elements are important for success, and I now feel that just about anyone who is really interested can make millions, without college, without any great IQ, without a lot of family money. I realize that 99.9 percent of the readers will read and nod, and go on doing what they have . . . unmoved. But if I can kick 0.1 percent in the butt and get them moving, I'll have helped. - Wayne.

Reach for the Stars!

I just finished reading Wayne's column in the June issue of Microcomputing. It was great.

To his words of wisdom, I hereby add my "condensed" philosophy as to why there are so few millionaires. There are four prime reasons: (1) teachers who are poor examples, (2) parents who don't motivate, (3) feeding of one's face and (4) peer pressure.

Who influences and spends the most time with children during their formative years, when personality traits such as motivation, determination and self-esteem are developed? Right, school teachers! Well, even the very few teachers who inspire young people to greatness have a credibility problem. How can a person who has a secure, tenured position, with a salary determined strictly by length of service (not ability or motivation), inspire anyone? Even for those few who do try, it's the old "do as I say, not as I do"' problem.

Then we have the parental influence. When's the last time you heard a parent say to a child, "Well, son, the world's at your feet. You can be like me and never work hard (or smart), or take a chance to really get somewhere, or you can reach for the stars.''? Under the mask of parental protection, they inspire kids to be just like them. Perhaps the real reason is they are afraid that someday their millionaire children might realize that they weren't so great after all.

Also, the vast majority of people are too busy feeding their faces to sit back and look at the big picture. Finally, and perhaps most important, people are afraid to be different. God forbid you let anyone know you're striving for "the big apple." Gee, what will they say if you fail? Better to hide in the pack, sit back, do your 9-to-5 bit, play it safe, and while you're at it, ridicule anyone else trying to get ahead. After all, if he makes it, it'll make you look bad.
It seems to me, if people spent a little more time working, and less time at the water cooler impressing their peers with how content they are about their lack of achievement, they'd be ten times more successful.

Donald R. Williams, President Educational Micro Systems, Inc. Chester NJ

Bulletin!

I am publishing the "TRS-80 Tiny-C and Assembler Programming Bulletin." This publication is directed toward users of Radio Shack's Editor/Assembler and Tiny-C Associates' Tiny-C interpreter for the TRS-80.

The quarterly "Bulletin" is a nonprofit publication intended primarily for the hobbyist. People interested in receiving it should write to me for subscription information.

Rob Varty
2193 Haygate Cr. Mississauga Ontario

Canada L5K $1 L 7$

RBLISHER'S REMARKS

(from page 6)
the programs from other publishers. We'd like to know your experience with the various operating systems, with the various languages available for the TRS-80 .
If you've worked out any system using a modem that will automatically call up another TRS-80 and leave a message, write about that quickly.

We're looking for material from games and hobby uses to educational programs, business programs and applications and
scientific applications. I keep hearing MIT professors snidely sneering at the TRS-80 and putting it down as a toy-so let's show these IBM people what is and what isn't a toy.

Writing articles is simple. You double space your typing and get cracking at it. We have people what can spell and correct you're grammar. A good picture or a rough drawing is worth a lot, and don't forget the cassette or a program dump on software. Send your material to Wayne Green, Microcomputing, Peterborough NH 03458. Hurry.

Career Positions

With a new magazine getting started this fall, there will be several more career positions open at Kilobaud Microcomputing. We're looking for people with writing and editing backgrounds, but also with some microcomputer experience.

There is also a need, particularly with Instant Software, for people with strong hobby-computing backgrounds to help with the evaluation of software submitted for publication . . . also for people to help set up and keep microcomputers going, interface various microcomputer systems, test out new products and write them up, etc. Help is also needed from people with advertising, marketing, bookkeeping and accounting experience, and all the other functions involved in a business of some size.

If this sounds good to you, you don't smoke and you'd like to live in one of the very best areas of the entire country, southern New Hampshire, please write and tell us what you've done, what you'd like to do and what you think you might be able to do for us.

COMPUTER

 CLINC(from page 7)
and I would like to obtain the following items or information for the line printer: (1) supplies of magnetic belts, (2) supplies of magnetic toner (INFOREX TM B-L), (3) a toothed-sprocket paper-feeder drive shaft, (4) information on installing and operating a graphics-mode option board.

I am unable to obtain the above items in Australia, or chase up the agents; therefore, I ask your readers for help.

Howard Wills 1/65 Edgar Street North Glen Iris, Vic. 3146 Australia

I am trying to set up a users group and newsletter for nonMIKBUG 6800-based machines, especially the Capitol Radio Engineering Institute (CREI) and National Radio Institute (NRI) school computers (which are identical). These are based on the Motorola J-Bug (compatible) monitor in the MEK format. I would appreciate any pointers or coverage you could give me.

> Mark J. Siebert 2599 Caulfield
> San Diego CA 92154

The National Museums of Canada, National Inventory Programme has initiated a project investigating the use of a microcomputer, specifically the Z-80 Sorcerer by Exidy, for museum collections management. This sounds similar to the project discussed by Paul Bunnell in the May 1979 edition of Kilobaud Microcomputing (p. 20).

As the National Inventory Programme is a nonprofit service institution, we are interested in sources of software which are, if not free, then inexpensive in exchange for development and application research.

We are also interested in what research has been carried out as to adaptability of software packages, in particular, data-base management and inventory control for museum use.

Jane Milne, Micro Group National Inventory Programme National Museums of Canada 240 Bank Street, 6th floor Ottawa, Ontario K1A 0M8
(613) 996-8501

NETV
 Products

(from page 20)

tile general-purpose tool can be used for diverse applications such as inventory systems, mail lists, indexing collections, history reports, payroll files, accounting files, price lists, client lists, etc.

Features include: completely

user-defined file structure with sequential, random and linked file maintenance; user-defined number of fields; data transfer between records; automatic highspeed search algorithms with global search function, built-in ISAM, etc.; fast sort/merge utility. Record-selectable output can be formatted (with/without headings, column titles, totals, etc.) and printed on various forms (labels, envelopes, preprinted forms, etc.).

Global, supplied on standard 8 inch IBM disk, comes complete with BASIC subroutine library supplied in source code and comprehensive manual for $\$ 295$. Manual alone is $\$ 35$.

Global Parameters, 1505 Ocean Ave., Brooklyn NY 11230. Reader Service number G33.

Real-time Audio Spectrum Analyzer

A real-time audio spectrum analyzer designed to fit inside the Commodore PET computer is now available from Eventide Clockworks, Inc., 265 West 54th St., New York NY 10019.

This real-time analyzer divides the audio spectrum from 20 Hz to 20 kHz into 31 third-octave bands
and displays those bands, with their relative amplitudes, on the PET screen. The unit can be used for measuring sound and noise levels, for optimizing the equalization of a hi-fi or public address system, for checking the frequency response of audio components and for speech and sound pattern recognition (useful for voice control systems).

With the analyzer, the PET can store and recall spectral data and compare them with past, future or other channel data. There is a PEAK HOLD feature, which enables the unit to determine whether any preset levels have been exceeded. Programs to access the analyzer are written in BASIC; three are provided with the unit: Interactive Operation, Self Test and Minimal Operation.

The analyzer comprises a single circuit board, which installs in about five minutes inside the PET. It has 31 third-octave filters, detectors, an analog-to-digital converter, a IK Read Only Memory that contains machinelanguage routines and the necessary peripheral circuitry for transferring data into the PET memory. The board draws its power from the PET transformer. Price is $\$ 595$.

Reader Service number E49.

A Look at Terminals

This report on video terminals, by Microcomputing staff member Jim Perry, tells you what video terminals are and also shows you some that are currently out on the market.

A computer without a video terminal is about as useful as an automobile without a windshield or steering wheel! The computer will run, but is certain to crash-also you won't know where you are. Besides the video terminal, there are other ways of communicating with the inner parts of your computer, but they are either very laborious or more expensive (sometimes both). This article is a quick guide to the wonderful world of terminals, with explanations
of what some of the terms mean and what to look for when you go shopping for a terminal.

What Is a Terminal?

So what do people normally mean by the term video terminal, or glass Teletype? Usually these devices consist of a TV-type display and type-writer-style keyboard-the display shows lines of text rather than a normal TV picture and the keyboard is electronically coded to give signals

A popular model from the Hazeltine line, the 1500 can be yours for around $\$ 995$. As with most terminals in this price area, it has many intelligent features plus a separate numeric keypad.
that the computer can understand. More and more computers are being produced with the keyboard as part of the actual computer (such as the TRS-80 and Sorcerer); some even have the display built into the computer (the PET being the most popular example). If you have purchased one with a built-in terminal, then you have the computer equivalent of a music center; separate video terminals are the requirement for computer "separate" installations. Much the same arguments apply to com-puter-system buying as to hi-fi purchasing; after all, a computer can cost as little (or as much) as a home stereo system.

In general, the computer system with separate video terminal will be put together with an eye toward expansion and will cost more than a comparable system with built-in terminal. One advantage is flexibility; because of industry standards (such as the RS-232 interface) virtually any terminal can communicate with any computer (in theory, at least). So you either need a video terminal or you don't; but even if you don't, it is useful to know about them.

Parlez-vous ASCII?

Internally the CPU (central processing unit) of all computers works with a strange language called machine language, which is rather unintelligible to most normal people, since it consists of a lot of high and low voltage levels. However, each different brand of computer uses a different version of the language, i.e.,

Z-80 machines talk differently than 6800 machines. Since this could cause lots of communication problems, a standard language called ASCII (American Standard Code for Information Interchange) was established. This code is used by virtually all computers; even though they may work differently internally, they all speak ASCII.

When the letter A is pressed on a terminal keyboard, the display also shows A, and the ASCII code for it is sent to the computer. If the computer program responds with the letter X, it does so by giving the terminal the appropriate ASCII code. Without a display you would either be in the dark as to the computer's response or have to interpret the computer's status display (usually a row of LEDs).

Before video terminals became available, the main way to talk to computers was via paper tape, punched cards or teleprinter units. Both paper tape and punched cards required a brain like a computer to understand, and teleprinter units were both exceedingly slow and noisy. Modern video terminals are silent, quick and easy to understand, as the computer output is given in letters and numbers (alphanumeric display).

Early terminals were basically very dumb, hence the phrase "dumb terminal." They had no way of manipulating the data fed to the computer or of interpreting the computer's special commands. With the development of LSI (large-scale integration), the electronics inside the terminals became more sophisticated. As a result, we now have "intelligent" terminals that can manipulate the data and generally make life easier for the computer and operator. More and more terminals are being produced with microprocessors built into them, with a resultant flexibility that was unheard of a few years ago.

Looks Can Deceive

When it comes to choice of terminal, the number of different specifications can be bewildering; so a basic knowledge of what all the terms mean can be very useful. Since the keyboard looks like a typewriter, a lot of people assume that it will produce both uppercase and lowercase letters - a dangerous assumption. Some terminals do indeed generate the ASCII code for uppercase and lowercase, but a lot of computers can become confused when presented

No, they don't come from the factory like this! This is a cutaway version of the popular Intertec Intertube terminal, clearly showing the unit's electronics. Note that terminals have very few innards compared to a TV set.
with the lowercase codes (indeed, many manufacturers use them to generate special operations within the computer). On the other hand, the computer may generate a lowercase code when it wants a special graphics character displayed, and the terminal will only produce the normal lowercase letter. It is even more confusing when the terminal generates an oddball character (for example, a diamond shape) when the computer wanted to display a lowercase letter.

Because of the possible problems, it is definitely useful to be able to select how you want the terminal to behave. Most terminals can be set up to automatically convert lowercase input or output into uppercase, thereby preventing problems. Of course, if your computer is happy with lowercase characters, a terminal that can display them is convenient to have, as a mixture of uppercase and lowercase is much easier to read. This is why we have both in the normal world.

While still on the subject of the actual display, we come to the specifications about "graphics characters" and "user definable" keys. Graphics characters are lines and shapes specially designed for drawing graphs and any other alphanumeric pictures
on the screen; user-definable keys are for the operator to tell the computer to perform a specific function. For example, you may designate a specific key as a control signal to the computer to stop a program and start a different one instead.

The most common method of generating the actual display is with the aid of ROM (read-only memory) that stores the format for each character as a sequence of dots in a matrix. Everybody has seen how the numbers 0 through 9 can be generated with seven segments on a digital watch; well, the video display has

The Intertec Data Systems terminal with its cover on. At $\$ 874$ for a single unit, this terminal has too many facilities to list!

The Southwest Technical Products CT-82 is a relative newcomer to the terminal field, replacing the old favorite CT-64. Priced at $\$ 795$, this terminal is very intelligent for the money.
characters based on a $5 \times 7,5 \times 8$ or, sometimes, 8×8 matrix. In general, the more dots in the matrix (8×8 has
64), the more the display characters will look like normal letters.

The size of the matrix will also be
linked to how many characters per line and lines per display can be seen. As an example, the Intertec Intertube terminal uses an 8×8 matrix with up to 80 characters per line and a maximum of 25 lines on the screen, whereas the SWTP CT- 82 uses a 7×12 matrix, with 82 characters per line and up to 20 lines on the screen. SWTP's characters are thinner but deeper.

The more sophisticated terminals have facilities such as reversed letters (black letters on an illuminated background), half brighteners in certain areas and flashing letters - all useful facilities if the terminal is to be used as an input for a lot of data. Anyone who has sat in front of a brightly illuminated display for any length of time knows the advantages of being able to turn down the brightness to alleviate eyestrain and also to prolong the life of the tube. When the same characters are displayed for hours on end in the same screen posi-tion-often for weeks on end in some business applications-the tube phosphor (the stuff that actually glows when bombarded with elec-

Price	Model	Manufacturer	Display	Upper/Lowercase	Graphics	Comments
\$2595	HT/7	Termiflex, Inc. 17 Airport Rd. Nashua NH 03060	20×4	Yes	Yes	Hand held.
\$1295	VT4800	VTT Box 60485, Sunnyvale CA 94088	80×48	Yes	Yes	Vector graphics as option.
\$1295	TLC	Problem Solver Systems Chatsworth CA 91311	80×24	Yes	No	Graphics soon.
\$995	1500	Hazeltine Corporation Greenlawn NY 11740	80×24	Yes	No	
\$874	Intertube	Intertec Data Systems 2300 Broad River Rd. Columbia SC 29210	80×25	Yes	Yes	
\$795	CT-82	Southwest Technical Products 219 W Rhapsody San Antonio TX 78216	82×20	Yes	Yes	92×22 option.
\$695 (kit)	H19	Heath/Schlumberger Benton Harbor MI 49022	80×25	Yes	Yes	\$995 built.
\$649	3360	Telecommunication Services Box 4117 Alexandria VA 22303	82×25	Yes	No	Refurbished Datapoint model.
\$495	3000	Telecommunication Services Box 4117 Alexandria VA 22303	72×25	Yes	No	Refurbished Datapoint model.
\$295	VDB-1	F\& D Associates 1270 Todd Road New Plymouth OH 45654	80×24	Yes	Yes	Board only.
\$275 (kit)	OE1000	Otto Electronics Box 3066 Princeton NJ 08540	64×16	Yes	No	\$350 built, needs video display.
\$190 (kit)	RE6416	Ramsey Electronics Box 4072 Rochester NY 14610	64×16	Option	No	\$249 built, board only.

trons) can be literally burned away. So being able to dim the letters that stay on the screen prolongs the terminal's active life!

Crude Commands

A cursor is not an impolite person but, rather, probably one of the most important features of any video terminal. It is usually an illuminated rectangle, the size of one character, that indicates where the next letter is going to appear. Some terminals have flashing cursors; some have continuously illuminated ones; and the best have controllable cursors, which you can make flash when waiting for an input and which can be illuminated while the computer is busy.

Cursor-control facilities enable the user to move the little white square around the screen, back along a line to remove characters or forward to insert spaces. A cursor home key, or command, will send it to the top left of the display. If this facility is present, you will usually get cursor up and down movements as well. Most of the time the cursor-control movements are used in conjunction with the terminal's editing facilities (if it has any, which it should have if it is to be
useful). By positioning the cursor over text, you can add to, remove from and generally mutilate anything you have on the display with a few deft keystrokes. The more sophisticated (intelligent) a terminal is, the more complex the editing commands.
One use for all this editing capability is to store your data until you tell the terminal to send it to the computer (so-called block transmit mode), if you have a terminal with internal memory and MPU. With this mode you can type in text and correct it before the computer chokes on all the mistakes you make.
What does a video terminal cost? you may ask! If you want to assemble a basic terminal, using a modified (or even unmodified) TV and do-ityourself kit, the cost can be as low as \$275 for the OE1000 from Otto Electronics (provide your own TV), or as high as $\$ 3995$ for a hand-held type from Termiflex! In the middle-price range there is a wide selection from $\$ 700$ to $\$ 1000 \ldots$ for this price you get a lot of intellect from the terminal. If you check what your computer needs in the way of a terminal and contact the different manufacturers (use the bingo card at the back

The Termiflex HT/7. Not quite a video terminal in the normal sense. At $\$ 2595$, it packs a lot of dollars into a small space!
of this issue), you should be able to make a decision based on sound judgement, rather than blind faith in a salesperson's chatter.

RELOCATABLE MODULES FOR THE TRS LEVEL II AND DOS SYSTEMS LOAD ANY OR ALL MODULES. FOR \$49.95 THE CORE PACKAGE INCLUDES:
 \section*{∞ STRING PACKAGE ∞}

∞ MATRIX PACKAGE ∞

Over 30 BASIC commands inciuding:
∞ Matrix Read, Inverse, Transpose, and Identity. Simultaneous Equations!!!
∞ Add, Subtract, or Multiply Scalars, Vectors, or Multidimension arrays!!!
∞ Dynamically Reshape, Expand, Delete Arrays, Change arrays in mid-program.
∞ Copy array elements, set arrays to scalar, zero arrays, move arrays.
∞ Tape array read and write including string arrays.
FOR $\$ 29.95$ more get the ∞ BUSINESS PACKAGE ∞
∞ Eliminate round-off error!! Multiple precision packed decimal arithmetic. 127-digit max. accuracy
∞ Binary search or sorted arrays. Insert new elements in sorted arrays!!!
∞ Automatic page headings, footings, and pagination. Includes forced end-of-page.
∞ Automatic hash for record retrieval!! And more for your professional packages.

Over 40 BASIC commands including:

∞ Left and right justify, truncate, rotate. Text justification. String centering.
∞ Delete or insert substring, Pack strings, Convert to upper or lower case.
∞ Translate characters, Reverse strings, Verify function, Number of occurrences.
∞ Masked string searches for simple or array variables. Encrypt or decrypt strings.
∞ Compress/uncompress character string arrays to 6 bits or less per character.
∞ AND the famous RACET machine language SORTS. Multikey multivariable and string. Sort 1000 elements in 9 sec !!
FUTURE ∞ ADD.ON PACKAGES ∞ will include ∞ STATISTICS ∞ INPUTIOUTPUT ∞ GRAPHICS ∞
Attn: TRS Add-On OEM's: We can support your special hardware add-ons with direct BASIC commands.
System Houses: We license System House usage of ∞ INFINITE BASIC ∞ modules.

COMMAND PROCESSOR 'COMPROC' for $\$ 19.95$ (DOS only)

Extend DOS-AUTO command to perform multiple steps elther at power-up or as a user command. Execute a script consisting of a sequence of commands or data from a BASIC command file.
REMODEL + PROLOAD for $\$ 34.95$ (Specify 16, 32, or 48 K version)
REnumber any section of a program, MOve program segments, DElete program lines.
Combine programs with renumber and merge. Load or save any portion of program from tape.
DISK SORT PROGRAM 'DOSORT' for $\$ 34.95$ (Specify 32 or 48 K , minimum 2 disk system) SORT/MERGE multi-diskette sequential files. Multiple variables and keys. Includes machine language in-memory sorts, comparators and string handling.
COPY SYSTEM TAPES with 'COPSYS' for $\$ 14.95$ (Non-DOS)

Check, VISA, M/C C.O.D. Calif. residents add 6\%
Telephone Orders Accepted (714) 637-5016

WHEN ORDERING PLEASE ADVISE PUBLICATION SOURCE

Inventory

Everyone needs to inventory something. This 9-operation program could be what you need.

Richard A. Blessing
22 Sunflower Lane
Fletcher NC 28732

1wrote these programs because I wanted to maintain a list of magazine articles on software for my RCA and North Star systems. As you will see, things got a little out of hand.

The main program, called Inventory, is used to create and maintain a file of character strings. The program can perform nine different operations on a file, besides creating the file or ending the session.
\#-returns the total number of records in the file.
A-adds elements to a file.
C-replaces an entry in a file.
E -ends the session.
FS-searches for and prints all occurrences of a string in the file.
1-initializes a file by zeroing the first record in the file. The
first record is maintained by all operations that add or remove elements from the file.
L-lists the elements in a file either on the screen or on a Teletype.
LS-prints a listing of the file using a file containing the sorted file pointers generated by a sort.
R-removes elements from a file.
S-calls a sort routine that will sort on any size key, located anywhere within the record.
The program is set up to write and maintain a file of records 62 characters long. This size can be adjusted by changing $\mathrm{A} 3 \$, \mathrm{~B} 1 \$$ and $\mathrm{B} 2 \$$ to the record size you need. You will also need to change all the random reads and writes. (For example, if you have a record length of 30 characters, line 730 becomes $730 \mathrm{II}=(1 * 32)+5$.)

You must take into account that North Star BASIC adds two characters to each record of 255 characters or less and adds three characters if the record is
longer than 255 characters. The 5 is added to offset for the first record, which contains the record count for the file.

You will also need to change the size of $A \$, D \$, C \$$ and possibly A2\$. These strings are all used in the input routine, which starts at line 910 and ends at line 1190. This routine draws a simple format of three fields on my CRT. It also automatically blank-fills each field and moves the cursor along as you hit the return key. You will need an addressable cursor to use this routine. The SIN function is used to create a delay for the OUT calls.

Sort Routines

I have provided two versions of my sort routine: One is written entirely in BASIC; the second version uses a machinelanguage program to perform the actual sort.

The sort routines never rearrange the records in the file being sorted. Instead, each record is read, and its position in the

Machine-language sort routine.

file and a sort key are stored in corresponding locations in an array or arrays. The sort keys are then compared and, if necessary, swapped along with their corresponding file positons. The technique used is an S/M SORT, which should be easy to recognize in the entirely BASIC version.
There are three character sets you can sort on. If you are sorting character strings of numbers only, the numeric sort will process eight characters per pass and should be used instead of the alphanumeric sort. The alpha sort is for characters only and processes six characters per pass. The alphanumeric sort processes five characters per pass.

At the end of each pass the sort keys are set equal to their location in the sort key array, and, in the case of equal sort keys, they are all set to the lowest value. These old sort keys are then stored in a file called "POINT" by using the file position's array as an index to write the sort keys. If another pass is required, the same procedure up to writing the sort keys is accomplished.

The file "POINT" is then read, and the old sort key is biased by 1000 and added to the new sort key. These sort keys are then sorted and written to "POINT." This process continues until all the characters within the field to be sorted have been considered.

The "POINT" file should be (5 * number of records) bytes in

s100 to ${ }^{\text {s }} 139$ Off the TRS-80 \longrightarrow Computers!

You can believe a product is tops, when more than 100,000 owners have chosen it over its competition! That overwhelming acceptance has dropped production costs, and allowed us to make TRS-80 an even better value.

\$100 Off! 4K Level I

This is the ideal beginner's computer system. Our manual makes learning programming in Level I BASIC a snap. Easily upgrades to Level II or more memory at any time. 26-1051 Was \$599 in 1979 Catalog
\$499*

\$139 Off! 16K Level II

Level II BASIC is one of the most powerful microcomputer programming languages. Level II TRS-80 systems can be expanded to include printers, disk storage and much more. 26-1056
Was \$988 in 1979 Catalog

TRS-80 Line Printer II

Now-for hundreds of dollars less than you'd expect to pay - you can add line printer utility and convenience to your Level II TRS-80 system. This top quality impact-type printer doesn't require special paper - you can use inexpensive rolls (available at Radio Shack), continuous forms (original and up to two carbons) or single sheets. The 7×7 dot matrix head prints 50 characters per second; 80 characters on 8 inch lines. Also prints expanded (wider) characters that are ideal for headings under software control. Standard $9 \frac{1}{2}$ inch wide continuous forms are kept in perfect alignment by nonadjustable pins on platen. Includes Expansion Interface cable. 26-1154 $\$ 999^{*}$

Radıo Shaek

The biggest name in little computers
A DIVISION OF TANDY CORPORATION - FORT WORTH, TEXAS 76102 OVER 7000 LOCATIONS IN NINE COUNTRIES

TRS-80 Line Printer II Interface Cable

Now you can attach the Line Printer II directly to your TRS-80 Level II 16K system. No Expansion Interface required unless you plan to add mini disks or more memory. 26-1416

76	23		INX H
5 C 77	5E		MOU E.M
$5 \mathrm{C78}$	2104	00	Lxi H. 4
$5 \mathrm{C7B}$	19		DAD D
$5 \mathrm{C7C}$	3A BC	5B	LDA DUM3
$5 \mathrm{C7F}$	BE		CMP M
$5 \mathrm{C8} 8$	CA 89	5C	JZ ZERO
5 CB 3	DA 48	5D	Jc thre
5 C 86	C3 BA	5C	JMP SWAP
$5 \mathrm{C89}$;
$\begin{aligned} & 5 C 89 \\ & 5 \mathrm{Cg} \end{aligned}$; EXPONENTS WERE EQUAL SO TEST digits
$5 \mathrm{CB9}$	2188	5B	ZERO: LXI H. DUM
$5 \mathrm{C8C}$	46		mov B,M
$5 \mathrm{C8D}$	23		INX H
5 CBE	4E		mov c,m
	${ }^{23}$		INX H
$5 \mathrm{C9} 0$	56		MOU D.M
$5 \mathrm{C91}$	23		INX H
			MOU E,M
$5 \mathrm{C9} 3$	EB		XCHG
	®A		LDAX ${ }^{\text {B }}$
$5 \mathrm{C95}$	BE		CMP M
$5 \mathrm{C96}$	DA 48	5D	JC thre
5 C 99	C2 BA	SC	JNZ SWAP
$5 \mathrm{C9C}$	0^{3}		INX B
	23		INX H
$5 \mathrm{C9E}$	0A		LDAX B
$5 \mathrm{C9F}$			CMP M
5 CAO	DA 48	5D	JC thre
$5{ }_{5} \mathrm{CA} 3$	C2 BA	SC	JNZ SWAP
5 CAG	${ }^{63}$		INX inX H
${ }_{5}^{5 C A 7}$	${ }_{\text {® }}{ }^{23}$		
5 CA9	BE		CMP M
5 CAA	DA 48	5D	JC THRE
	C2 BA	5 C	JNZ SWAP
5 CB	${ }^{3}$		INX ${ }^{\text {a }}$
$5 \mathrm{CB1}$	23		INX H
$5 \mathrm{CB2}$	¢A		LDAX ${ }^{\text {a }}$
5 CB 3	BE		CMP M
$\begin{aligned} & 5 \mathrm{CB4} \\ & 5 \mathrm{CB7} \end{aligned}$	CA 48	5D	JZ ThRE
5 CBA			
5 CBA			; SWAP ARRAY ELEMENTS
5 CBA			SUAP: LXI H, DUMI
5 CBA	2188	5B	SWAP: LXI H, DUMI
$\begin{aligned} & 5 \mathrm{CBD} \\ & 5 \mathrm{CBE} \end{aligned}$	46 23		MOU B,M INX H
5 CBF	4 E		mov C,M
5 cco	21 AA	5B	Lxi H, T0
${ }_{5} \mathrm{CC} 3$	EB		XCHG
$5 \mathrm{CC4}$	CD 70	5D	Call chang
${ }_{5}^{5 C C 7}$	3A A9 21 21	58 58	LDA FPTA 1 LXI H,ADD $1+1$
5 CCD	86		ADD M
5 CCE	${ }^{45}$		mov C,A
5 CCF	32 BE 3 A AB	58	STA DUM4*1
$\begin{aligned} & 5 \mathrm{CD2} \\ & 5 \mathrm{CD5} \end{aligned}$	${ }^{3 A}{ }^{3 A}{ }^{\text {AB }}$	5B	LDA FPTA DCX H
5 CD6	8 E		ADC M
$5 \mathrm{CD7}$	47		MoV B,A
5 CDB	32 BD	58	STA duma
$\begin{aligned} & 5 \mathrm{CDB} \\ & 5 \mathrm{CDE} \end{aligned}$	$21_{21}{ }^{\text {AF }}$	5B	
5 CDF	CD 70	5D	Call chang
5 CE2	21 B8	5B	LXI H. DUM 1
5 CES	56		mov dom
	23 $5 E$		InX MOU E, M
5 CEE	23		INX H
5 CE9	46		mov Bom
5 CEA	23		INX ${ }^{\text {n }}$
$\begin{aligned} & \text { 5 CEB } \\ & 5 \text { CEC } \end{aligned}$	CD 70	5D	MOU C,M
5 CEF	3 A A9	5 B	LDA FPTA +1
5 CF\%	2187	$5 B$	LXI H. ADD2+1
5 CF5	86		ADD M
5 CF6	4 F		MOU C, A
${ }_{5} \mathrm{CFF7}$	$3{ }^{3 A}$ A8	58	LDA FPTA
${ }_{5} 5$ CFFA	${ }_{8 E}^{28}$		DCX ${ }_{\text {d }}$
5 CFC	47		MOV B,A
SCFD	21 日D	58	LXI H, DUM4
5000 5001	${ }^{56}$		MoU D.M
S D02	${ }_{5 E}^{23}$		INX M ${ }_{\text {MOU }}$
5 D03	CD 70	SD	call chang
5006	21 BA	58	LXI H, Duma
5 D09	56		mou d.M
5 DDA	23		INX H
5 DOB	SE A		MOU E, M
5 DQCO 5 DQF	$\begin{array}{lll}01 & \text { AA } \\ \text { CD } \\ 70\end{array}$	5 SB	LXI B,T0 CALL CHANG
5 D 12	3A A9	5B	LDA FPTA 1
5 D15	2187	5B	LXI H, ADD2+1
5 D18	86		ADD M
$5{ }^{519} 5$	5F		MOU E, A
5 D1A	3A AB	58	LDA FPTA
$5 \mathrm{SD1D}$	${ }_{81}^{21} 86$	SB	${ }_{\text {LXI }}^{\text {L }}$ H, $\mathrm{H}, \mathrm{ADD2}$
5 D 21	57		MOU D,A
5 D 22	01 AF	5B	LXI B.T1
5 D25	CD 78	5D	call chang
5 D 28	21 A3	5B	LXI Heg+1
5 D 2 B	3 Cl	5B	LDA CNTS+1
S D2E	${ }^{96}$ c2	5B	SUB M ${ }_{\text {STA }}$ CNTS +1
5 D32	4 F		Mov C, A
5 D33	2 B		DCX H
5 D34	${ }^{3 \mathrm{~A}} \mathrm{Cl}$	5B	LDA CNTS
5D38	9 Ec	5B	SBE M
5 D3B	47		MOU B, A
5 D3C	DA 48	SD	Jc thre
5 D 3 F	C2 15	SC	JNZ COMP
SD42	38900		MUI CMP C
$\begin{aligned} & 5 \text { D45 } \\ & 5 \text { D48 } \end{aligned}$	dA 15		JC COMP

length．Thus，for 1000 records ＂POINT＂would have a size of 5000 bytes．This method allows you to store several sorted ver－ sions of a file in a much smaller amount of mass storage than the individually sorted record files would take．

If you use the machine－ language version of the sort， you will need to reset ENDBAS to 5 EOOH and load the sub－ routine in $5 B A O H$ through 5 D 84 H ．The two addresses， SKSA and FPTA，are the loca－ tions of $\mathrm{P}(1)$ and $\mathrm{P} 1(1)$ ，respec－ tively．If you change the BASIC program or the size of the ar－ rays，you will need to adjust these values．

I found their locations by starting the program then do－ ing a CTRL－C and setting a value I could easily recognize into $P(1)$ and $P 1(1)$ ．I then exited to the monitor M2AOO and searched memory until I found the locations in memory．The program is set to sort up to 1000 records．If you change this number you will also need to in－ crease the number in line 410 used to bias the old sort key． Changing it to 10000 would allow you to sort up to 10,000
records．
Using this routine I can sort 320 62－character records on a 24 －character field in about 11 minutes．The same file sorted on a five－character alpha－ numeric field，six－character alphabetic field or eight－ character numeric field takes about $21 / 2$ minutes．

These times are from execu－ tion on a North Star Horizon I with 16 K dynamic RAM， 24 K static RAM，an Otto OEM－1000， TVT and a KSR－33 TTY．Every－ thing except the Teletype was assembled from kits．

I have nothing but praise for both North Star and Godbout． All of the hardware has per－ formed error－free under almost daily usage．I also praise S－100 for extremely quick delivery of the kits I have ordered．
One other plaudit：Super－ soft＇s ARIAN system is an ex－ cellent system for writing assembly－language programs．I had been using another com－ pany＇s assembler／editor and wish I had purchased the ARIAN system first．I liked it so much I have ordered their Tiny PASCAL．They also provide rapid delivery．

10 INPUT＂NAME OF FILE TO SORT＂：A1S
3 O OPENGO，AISTREADOE，TINCLOSE OA
AB DIM P（TI， 1 ），RSC SS2）
5 I INPUT＂TYPE OF SORTT，ALPMA＝A，ALPHA \＆NUM＝AN，NUM $=N$＂．AA

$9 B \mathrm{~S}=(\mathrm{E}-8)+1 \backslash \mathrm{P}=1 \mathrm{NT}(\mathrm{S} / A 3+-9) \mathrm{P} 2=8$

$168 \mathrm{R}=\mathrm{A}$
$178 \mathrm{P}(\mathrm{Y}, \theta)=P(Y, \theta)+R * X(K)$ NNEXT
188 IF Y\＆T1 THEN 138 ELSE CLOSE－OVB－B \＆N
198 REM START S／M SORT

$220 Y 2=11 Y 3=Y-Y 1$
$\begin{array}{ll}230 & Y 4=Y 2 \\ 24 e \\ Y 5=Y 4 * Y 1\end{array}$

$60 T=P(Y 4, \theta) \backslash T \theta=P(Y 4,1) \backslash P(Y 4, \theta)=P(Y 5,0) \backslash P(Y 4,1)=P(Y 5,1)$
70 P（Y， 0 ）＝TIP $(Y 5,1)=T 0$
288 YAOYA－Y 1 THEN 240
296
308 Y
$\begin{array}{ll}300 \\ 310 \text { IF } Y 2+1 \\ 310>Y 3 & \text { THEN } 210\end{array}$
310 IF Y2＞Y3 THEN 210
320 GOTO 230
330 IF P2＜＞8 THEN A40 \P2＝1

$370 \quad 01=N 1 N P(1, \theta)=P(1)$
360 OI $=N 1 \backslash P(1, \theta)=1$
390 NEXT
4 © OPEN－日，＂POINT＂MFOR $I=1$ TO Y
410 WRITE © $8((P(1,1))-1) * 5, P(1,8)$ ，NOENDMARK
42 NEXTICLOSE

480 OI＝NITP（I， 8$)=1$

528 NEXTICLOSE OOGOTOI 90°
536 INPUT＂DO YOU WANT LIST ON TTYT＂，HS
5 AE IF HS

570 CHAIN＂INUENTRY＂

610 READ PB，RSIY＝Y $+11 P(Y, 0)=01 P(Y, 1)=Y$

630 IF $\mathrm{Y}<\mathrm{TI}$
648 бо 190

BASIC sort routine．

Program listing．

```
10 DIM As(22),A2s(22),A3s(62),Ds(20),C$(20),P(500),B1s(62),B2s(62)
20 DEF FNA(B1s,B2s,K)
30 FOR I=1 TO (LEN(B2$)-LEN(B1$)+1)
40 IF Bis(1,1)<>B2S(I,I) THEN 70
50 IF B1S<>B2S(I,(I+LEN(B1S)-1)) THEN 70 ELSE | K," ",B2s
60 RETURN D
7. NEXT\GOTOGO
8}0\mathrm{ FNEND
80 FNEND
100 ! TAB(10),"INVENTORY PROGRAM"
110 ININPUT "TYPE IN THE NAME OF THE FILE YOU WISH TO UPDATE ",AIS
120 T = FILE(A1S)
120 T F FILE(AISSN
40 I"FILE DOES NOT EXIST - DO YOU WISH TO CREATE IT P"
150 INPUT KSIIF KS ="NO" THEN END
160 INPUT "FILENAME ",AIS\INPUT "LENGTH ",K\ERRSET 180,K1,Kz
170 CREATE AIS,K\GOTO 190
180 "FILE LENGTH TOO LARGE : "\GOTO }16
190 IM "SELECT A COMMAND FROM THE FOLLOWING AND ENTER IT."\IN
20日 PRINT " LIST THE FILE - 'L.."
210 PRINT " INITIALIZE A NEW FILE - .I.".
220 PRINT ". REMOVE AN ITEM - 'R'"
2 30 PRINT " ADD ITEMS - "A."
240 PRINT" SORT ITEM LIST - 'S."
250 PRINT" LIST A SORTED FILE - 'LS...
260 PRINT ". NUMBER OF ITEMS IN FILE . .....
260 PRINT ". NUMBER OF ITEMS IN FILE 
270 PRINT ". CHANGE AN ENTRY - 'C
280 PRINT ". END PROGRAM - 'E'"."
30日 ハN!
310 INPUT AS
320 IF AS="I"" THEN 450
330 IF AS = "L" THEN 490
340 IF AS="R"" THEN 670
350 IF AS="C"" THEN 840
360 IF AS=""A" THEN }88
370 IF AS="LLS" THEN 1200 "MACS"
390 IF AS="E" THEN END
400 IF AS = "FS" THEN 1280
410 IF AS (1, 1) <>>"" THEN 440
42g OPEN |,AISIREAD |. T\CLOSE |O\"THERE ARE ",T," ITEMS."
40 GOTO310
44E PRINT "IMPROPER REQUEST TRY AGAIN"\GOTO 190
450 OPEN OD,A1S
460 Z =0 WRITE 0,Z,NOENDMARK
470 CLOSE OO
480 GOTO 640 YOU WANT LISTING ON THE TTY ?
490 PRINT "DD YOU WANT LIS
500 INPUT "YES OR NO "",AS
510 IF AS (1,1)="Y" THEN O1=1 ELSE O I=0
520 OPEN 6,A1S
```

550 PRINT＂there are＂，T，＂Items in the file．＂
560 ハハ！
570 IF T＝0 THEN 620
580 FOR $1=1$ TO T
590 READ 00，A3s
606 PRINT
610 NEXT
620 CLOSE
630 小川川！
640 PRINT＂TYPE IN NEXT COMMAND OR ？IF YOU WANT＂
650 PRINT＂THE LIST OF COMMANDS AGAIN，＂̈
670 OPEN AD．A1S
680 READAO．T
690 CLOSE ： 0
700 INPUT＂WHAT •ITEM DO YOU WISH TO REMOVE ？＂，R
710 OPEN D，A1S
720 FOR $1=R$ TO（T－1）
740 READ（ $1 * 64$ ）+5
750 11＝11－64
760 WRITE $\$ 11, A 38$, NOENDMARK
778 NEXT 1
780 CLOSE
$790 \mathrm{~T}=\mathrm{T}-1$
800 OPEN OA，A1s
16 WRITE ©，T，NOENDMARK
20 CLOSE 0
30 GOTO 620
840 INPUT＂ENTER ENTRY $\cdots \cdot, T$ ITOPEN $0, A 1 \$ \backslash T=T-1$

60 CLOSE ©0！＂TYPE IN NEW LINE＂\INIEI＝1
70 GOTO 946
80 OPEN 0，AIS
90 READ O，T
910 ITPRINT＂WHEN DONE ENTER＇DONE＇FOR ITEM NAME．＂\IM 920 ＂IF YOU WANT TO ERASE AN ENTRY，ENTER A＊＊＇AS THE＂
$9301^{\circ} \mathrm{LAST}$ CHARACTER IN THE LAST FIELD．＂\IM！ $9401^{\circ \prime}$
950 ハハハ！
960 FOR $I=1$ TO GOUT $2,11 \mathrm{Z}=$ SIN（90）${ }^{2}$ NEXT
970 OUT $2,9 \backslash Z=\operatorname{SiN}(90)$ NINPUTI＂＂，AS
980 IF AS＝＂DONE＂THEN 800
$990 X=24-L E N(A S) \backslash A S=A S+A 2 S$
1000 FOR $I=1$ TO XIOUT $2,9 \backslash Z=S I N(9 \theta) \backslash N E X T$
1010 INPUT1．．．C，Cs
$1020 \mathrm{X}=19$－LEN（Cs） $1 \mathrm{CS}=\mathrm{C} \$+$ A2
1030 FOR $I=1$ TO XIOUT $2,9 \backslash Z=S I N(90)$ NNEXT I
1040 INPUT＂＂，DS
1650 IFLEN（DS）＝0 THEN 1880
1060 IF DS（LEN（DS），LEN（DS））＜＞＂＊＂THEN 1080
1070 OUT $2,5 \backslash Z=S I N(9 \theta)$ GOTO970
1080 DS $=D S+A 2 \$$
$1090 \mathrm{~K}=(\mathrm{T} * 64)+5$
1100 OUT $2,5 \mathrm{Z}=\operatorname{SIN}(90)$
1100 AT $2, S \backslash Z=S I N(90)$
1110 A3S $=A S+C S+D S+A 2 S$
1110 A3s＝As＋Cs＋D
1120 OPEN 0，A1s

1140 CLOSE
1150 IF E1＜＞1 THEN 1160 ELSE E1＝0 ハNI GOTO640
$1160 \mathrm{~T}=\mathrm{T}+1 \backslash \mathrm{~T} \theta=\mathrm{T} \theta+1 \mathrm{IF} \quad \mathrm{T} \theta<5$ THEN 970 ELSE $T \theta=0$
1170 OPEN O日，A1S
1180 WRITE A．\circ ，T，NOENDMARK
1190 CLOSE－OVGOTO97日
$1290 \quad Q=9$
1210 INPUT＂DO YOU WANT LISTING ON TTY ？＂，HSIIF HS＝＂YES＂THEN $0=$
1220 OPEN O，AISTREAD O，Y
1230 OPEN 1, ＂POINT＂\FOR $I=1$ TOY
1240 READ 1，P（I）NNEXTICLOSE 1
1250 FOR $I=1$ TOY

1280 INPUT ．
1280 INPUT＂TYPE IN STRING＂，BIS
1290 OPEN 130 AIS IREAD O．T
1300 FOR $K=1$ TO TIREAD $0, B 2$
$1310 \mathrm{D}=\mathrm{FNA}(B 1 \mathrm{~s}, \mathrm{~B} 2 \mathrm{~s}, \mathrm{~K})$ NNEXTVCLOSE बVGOTO 640

ON X GOSUB VVVV，TTTT

This metric and English equivalents program is built around a little－used TRS－80 routine．

Allan S．Joffe W3KBM
1005 Twining Road
Dresher PA 19025

When you first start out to become a programmer， there is the usual tendency to stick to the book．After all，who knows more about this comput－ er than its mother？When the apron strings are cut，you turn to the advice of friends－be they people or periodicals－to up． grade your repertoire and your skills．If it is true that this latter step molds you more strongly than the book，it may be one reason why I personally see so little use of the following TRS－80 routine：
ON D GOSUB Line \＃，Line \＃，Line \＃．．．etc
Fundamentally，this routine lets you set up a table or list of subroutines that may be selec－ tively called or implemented by selecting an appropriate integer value for D ．To illustrate the use of this BASIC utility，I have writ－ ten a simple program that will
give you selected metric／English and English／metric equivalents （see program listing）．
Lines 10 through 16 create the billboard or menu that gives you guidance on how to utilize the program．Lines 120 through 170 contain the information that allows the computer to operate upon your input value and return the desired information．Line 60 is the entry point to the proper line in the subroutine listing． Note that the double comma in line 14 is needed to properly for－ mat this line of print in the bill－ board．
You may use an alternative for line 70：
70 INPUT＂PRESS ENTER TO CONTINUE＂； BS

This will hold the answer on the screen for as long as you wish． Then if you wish to perform an－ other calculation，merely press ENTER，and the screen will clear the old information and reestab－ lish the billboard．
When you run the program， the billboard will appear along with a request to input your
value to be converted．When you have entered this value，the pro－ gram will then ask you to input a number value from the billboard to indicate what function you wish performed．For instance，if you wanted the input value in gallons to be changed to liters， then you would input 5 as the operations number．The com－ puter would then go to the fifth subroutine in the list（line 160），
operate on your input value and return the answer．

It is obvious that the limit of the number of conversions you can program is only in your imagination and your will－ ingness to type up the desired program．If you have not prac－ ticed programming with this routine，do so，as it will give your programs a newfound flexi－ bility．

5 CLS

10 PRINT＠4，＂METRIC CONVERSION OPERATIONS NUMBERS＂
12 PRINT＠ $64, " 1$＝YDS TO METERS＂，＂ 2 ＝METERS TO YDS＂
14 PRINT＠12 128，＂ 3 ＝INCHES TO CM＂，，＂4＝CM TO INCHES＂
16 PRINT＠ $192, \cdot " 5=$ GALLONS TO LITERS＂，＂ 6 ＝LITERS TO GALLONS＂
20 PRINT：PRINT：PRINT：PRINT
40 INPUT＂FIRST VALUE＂；C
50 INPUT＂OPERATIONS NUMBER＂；D
60 ON D GOSUB $120,130,140,150,160,170$
65 PRINT C
70 FOR J＝ 1 TO 1500：NEXT J
80 GOTO 5
$120 \mathrm{C}=\mathrm{C} . .9114$ ：RETURN
$130 \mathrm{C}=\mathrm{C} \cdot 1.0936$ ：RETURN
$140 \mathrm{C}=\mathrm{C} .2 .54$ ：RETURN
$150 \mathrm{C}=\mathrm{C} * .3937:$ RETURN
$160 \mathrm{C}=\mathrm{C} \cdot 3.785:$ RETURN
$170 \mathrm{C}=\mathrm{C} * .2642:$ RETURN
Program listing

APPLE II® PROFESSIONAL SOFTWARE

PIE TEXT EDITOR

PIE (PROGRAMMA IMPROVED EDITOR) is a two-dimensional cursor-based editor designed specifically for use with memorydesigned specically mapped and cursor-based CRT's. It is otally different from
which were originally designed for Teletypes. which were originally designed for Teletypes.
The keys of the system input keyboard are assigned specific PIE Editor function commands. Some of the features included in the PIE system are: Blinking Cursor; Cursor movement up, down, right, left, plus tabs Character insert and delete; String search forwards and backwards; Page scrolling; GOTO line number, plus top or bottom of file; Line insert and delete anywhere on screen Move and copy (single and multiple lines);
Append and clear to end of line; Efficient memory usage. The following commands are available in the PIE Text Editor and each is executed by depressing the systems argument key simulataneously with the command key desired:
[LEFT] Move cursor one position to [RGHT] Move cursor one position to Move cut
[UP] Move cursor up one line
[DOWN] Move cursor down one line
[BHOM] Home cursor in lower left eft hand corner
[HOME] Home cursor in upper left hand corner
[-PAG] Move up (toward top of file)
one "page"
+PAG) Move down (toward bottom
(LTAB] Of file) one page
horizontal tab
[RTAB] Move cursor right one
[BOT] [OOTO] Go to line ' n
(last line + 1)
[-SCH] Search backwards (up) into file for the next occurence of the string specified in the last search command
[ARG] t [-SCH] Search backwards for string ' t '
[+SCH] Search forwards (down) into the file for the next occurence of the string specified in the last search command
[ARG] $t+S C H$] Search forward for string ' t '
[APP] Append -move cursor to last character of line +1
[INS] Insert a blank line beforere the current line
[ARG] n [INS] Insert ' n ' blank lines before the current line
[DEL] Delete the current line, saving it in the "push" buffer
[ARG] n[DEL] Delete ' n ' lines and save the [DBLK] Delete the current line as long
[PUSH] Save current line in "push"
[PUSH] Save cur
[ARG]n[PUSH] Save ' n ' lines in the "push'
[POP] Copy the contents of the "push"
[CINS] Enable character insert mode
[CINS] [CINS] Turn off character insert mode [BS] Backspace
[GOB] Gobble - delete the current character and pull remainder of character
[EXIT] Scroll all text off the screen and exit the editor
[ARG] [HOME] Home Line - scroll up to move current line to top of screen
[APP] [APP] Left justify cursor on current line
[ARG] [GOB] Clear to end of line
Apple PIE Cassette 16K \$19.95
TRS-80PIE Cassette 16K 19.95
Apple PIE Disk 32K 24.95

6502FORTH • Z-80FORTH

 6800 FORTHFORTH is a unique threaded language that is ideally suited for systems and applications programming on a micro-processor system The user may have the interactive FORTH Compiler/Interpreter system running standalone in 8 K to 12 K bytes of RAM. The system also offers a built-in incrementa assembler and text editor. Since the FORTH language is vocabulary based, the user may tailor the system to resemble the needs and structure of any specific application.
Programming in FORTH consists of defining
new words, which draw upon the existing vocabulary, and which in turn may be used to define even more complex applications. Reverse Polish Notation and LIFO stacks are used in the FORTH system to process rithmetic expressions. Programs written in FORTH are compact and very fast.

SYSTEM FEATURES \& FACILITIES

Standard Vocabulary with 200 words
Incremental Assembler
Structured Programming Constructs
Text Editor
Block 1/0 Buffers
Cassette Based System
User Defined Stacks
Variable Length Stacks
User Defined Dictionary
Logical Dictionary Limit
Error Detection
Buffered Input

CONFIGURATIONS
AppleFORTH Cassette 16K \$34.95

AppleFORTH Disk 32K

 9.95 PetFORTH Cassette 16 K TRS -80FORTH Cassette 16 K SWTPCFORTH Cassette 16K 34.9534.95 34.95

ASM/65 EDITOR ASSEMBLER

ASM/65 is a powerful, 2 pass disk-based assembler for the Apple II Computer System. t is a compatible subset of the FORTRAN cros assemblers which are available for the 6500 family of micro-processors. ASM/65 features many powerful capabilities, which are under direct control of the user. The PIE Text Editor co-resides with the ASM/65 Assembler to form a comprehensive development tool for the assembler language programmer. Following are some of the features available in the ASM/65 Editor Assembler.

PIE Text Editor Command Repetoire Disk Based System
Decimal, Hexadecimal, Octal, \& Binary Constants
ASCII Literal Constants
One to Six character long symbols
Location counter addressing ".."
Addition \& Subtraction Operators in Expressions
High-Byte Selection Operator
Low-Byte Selection Operator
Source statements of the form:
[label] [opcode] [operand] ;comment]
56 valid machine instruction mnemonics
All valid addressing modes
Equate Directive
BYTE Directive to initialize memory Iocations
WORD Directive to initialize 16 -bit words PAGE Directive to control source listing SKIP Directive to control source listing
OPT Directive to set select options
LINK Directive to chain multiple text files Comments
Source listing with object code and source statements
Sorted symbol table listing

CONFIGURATION

Apple II 48K/Disk $\mathbf{\$ 6 9 . 9 5}$

LISA INTERACTIVE ASSEMBLER

LISA is a totally new concept in assembly language programming. Whereas all other assemblers use a separate or co-resident text editor to enter the assembly language program and then an assembler to assemble the source code, LISA is fully interactive and performs syntax/addressing mode checks as the source code is entered in. This is similar in operation to the Apple II Integer BASIC Interpreter. All error messages that are displayed are in plain, easy to understand English, and not simply an Error Code. Commands in LISA are structured as close as possible to those and not simply an Error Code. Commands in LISA are structured as close as possible to those
in BASIC. Commands that are included are: LIST, DELETE, INSERT, PR \#n, IN \#n, SAVE, in BASIC. Commands that are included are: LIST, DELETE, INSERT, PR \#n, IN \#n, SAVE,
LOAD, APPEND, ASM, and a special user-defineable key envisioned for use with "dumb" perLOAD, APPEND, ASM, and a special user-defineable key envisioned for use with "dumb" per-
ipherals. LISA is DISK il based and will assemble programs with a textfile too long to fit into the Apple memory. Likewise, the code generated can also be stored on the Disk, hence freeing up memory for even larger source programs. Despite these Disk features, LISA is very fast; in fact LISA is faster than most other commercially available assemblers for the Apple II. Not only is LISA faster, but also, due to code compression techniques used LISA requires less memory space for the text file. A full source listing containing the object and source code are produced by LISA, in addition to the symbol table
Apple II $32 \mathrm{~K} /$ Disk $\$ 34.95$

PROGRAMMA
 INTERNATIONAL, INC.

 3400 Wilshire Blvd. Los Angeles, CA 90010(213) 384-0579 • 384-1116 • 384-1117

Apple II is a registered trademark of Apple Computers, Inc. These professional products are available at your local computer dealer.

It's Time for Core

A hard-core computerist's memory vigil pays off. Now you can learn more about core.

TThe computer hobbyist seeking to expand the memory capability of his machine is faced with so many potential sources of RAM and ROM that it's often a difficult task to make a choice. Knowing that commercial and military minicomputers use a nonvolatile magnetic core memory, l've been waiting for the day when core would start to show up on the personal computer scene.

Recently, my patience paid off. Several large manufacturers are now offering 8 K and 16 K core memories for use with the 8080. Additionally, a New Jersey computer surplus dealer is currently featuring several varieties of core. While the cost of core directly from the manufacturers is still three or four times that of the equivalent amount of solid-state memory, the surplus price is essentially the same as RAM, in some cases less!
The boards I chose were surplus Ampex core memories complete with read/write and addressing electronics. Built by Ampex for use in a commercial minicomputer, they are available in new condition from Electravalue Industrial, PO Box 157, Morris Plains NJ 07950. Price, fully tested with documentation, is $\$ 150$ for $8 \mathrm{~K} \times 8$ and $\$ 325$ for $16 \mathrm{~K} \times 8$, UPS shipping paid. The price includes a 16-page detailed product specification. A large set of schematics is also available for $\$ 4$

extra.

Of the several types of core memory available from Electravalue, the Ampex core is clearly the easiest to interface to an 8 -bit machine. After getting a copy of the product specification, I studied the power requirements and timing diagrams. It began to appear that this core would be a natural for use with an S-100 machine; it almost seemed as if they were designed for each other. Although the nominal cycle time of the core is 1200 ns , the timing signals are such that with a 2 MHz clock the CPU will run without any wait states.

When my 16 K core memory assembly arrived, I was quite pleased. Although the cores are being sold as surplus, my unit arrived in the original Ampex box and appeared to be brand new. The date codes on the schematics and components implied that the units had been manufactured during or after 1974, and the technology utilized reflects this.

The core consists of two boards, one mounted above the other, supported by metal standoffs and electrically connected by finger-type contacts located around the sides of the boards. This makes it easy for curious persons to disassemble the unit.

The actual core planes are located between the two boards, protected by a metal shield still bearing the original unbroken
anti-tamper seals. The lower board has two groups of edge connector fingers on one end, address selector switches on the other end and many 7400 series ICs, along with some transistors and resistors. The edge connector fingers match standard, dual, 22-contact edge connectors.
The upper board is an impressive collection of ICs (7400 and 75000 series, mainly Texas Instruments) and a number of

Fig. 1. The core assembly ad-dress-selection switch. Address selection is made by closing contacts as shown in the table. Note that a 16 K board has two switches and is addressable as two independent 8 K blocks of memory. The address selector block is located at the rear of the unit (side opposite the edge connector) on the lower board.
diodes. The layout, schematics and availability of parts should make this a very serviceable unit.
The 16 K core board consists of two 8 K blocks of memory that can be addressed separately. The address-selection switches allow each block to be placed on any 8 K memory boundary in a 64 K system (see Fig. 1).

Theory

By reading the product specification, I could see that the core assembly would operate in three different modes: the read/ restore mode, the read/modify/ write mode and the clear/write mode. Since the data in a physical magnetic core toroid is always destroyed when that core is read, it is necessary to rewrite it back into the same location after reading it. That is done automatically in the read/ restore cycle. The read/modifyl write and the clear/write modes do just exactly what their names imply.

I could also see that the decision as to which mode was to be used had to be made early in the core cycle. Since the 8080 doesn't tell the outside world what it is going to do (read, write, input, output, etc.) until 500 ns after the start of its instruction cycle, I decided to initiate a core read/modify/write cycle near the start of every 8080 cycle and then control the flow of data within the interface

Fig. 2. The data lead switching portion of the S-100 interface. The M and E leads go to the core assembly edge connector, and the data leads on the left go to the S-100 bus lands on the Vector 8800V prototype board.
using the 8080 status information when it became available.
When the 8080 reads from core, the interface allows the core to rewrite the data that has just been read. The 8080 writes to core by ignoring the core output data and rewriting instead the data to be written. During a non-core I/O input instruction, the core goes through a read cycle with its data isolated from the 8080 data bus by interface output buffers. During a non-core I/O output instruction, the core again goes through a read cycle, ignoring the data on the 8080 bus. This technique allows the core to operate with the 8080 using a 2 MHz clock, with no wait states!
The interface also provides the ability to single-step a program from the front panel, if you have one, and to begin program execution at a specific address using the EXAMINE and RUN switches. The power
used by the interface and by the core unit (+5 V , +12 V and -12 V) is derived from the $\mathrm{S}-100$ bus and is regulated on the interface board using a sim-
ple power supply.

Construction

The S-100 interface consists of the circuitry of Figs. 2 and 3 ,

IC	Part Number	+5 V	GND
1	74123	16	$1,8,9$
2	74123	16	8,9
3	7400	14	7
4	74158	16	8,15
5	74158	16	8,15
6	7475	5	12
7	7475	5	12
8	7402	14	7
9	7438	14	7
10	7438	14	7
11	7404	14	7
12	7474	14	7

Table 1. The battery and ground requirements of the ICs used in the interface circuit.
the wiring of Figs. 4 and 5 and the power supply of Fig. 6. My prototype is on a Vector 8800 V board. This S-100 board comes with a heat sink and an area on the card for a 340-T5 or 7805 type voltage regulator, which is used to power the ICs on the card.

Start by mounting the regulator and the IC sockets. Then wire the +5 volt and ground distribution shown in Table 1 (+5 volts and ground are bused on the 8800 V board). Use bypass capacitors, particularly around IC9 and IC10. When this wiring is done, perform the in-ter-IC wiring, including the resistors and capacitors for IC1 and IC2. I soldered these parts right to the socket pins after the wiring was completed.

Next, wire the connections from the prototype board to the core assembly edge connectors, as shown in Figs. 4 and 5. The address lead wiring of Fig.

Fig. 3. The control portion of the interface. It is not advisable to "or-tie" the outputs of the TTL logic as I have done with pins 3 and 8 of IC3. If this bothers you, then use a 7403 in place of the 7400 . If you do, you will have to connect each output pin to +5 V with a 470 Ohm resistor.

Fig. 4. The address connections between the 8800V S-100 bus and the core assembly edge connector. The numbers on the right-103A, 103B, etc. -are shown graphically in Fig. 5. Do not mix the address and data leads going to the core assembly.

4 goes directly from the edge connector lands on the 8800 V to the edge connector of the core assembly. When doing this part, use no more than two feet of ribbon cable and keep the address leads, AO to A15, and the data leads, E1-E8 and M1-M8, separate from each other. In other words, don't alternate the address leads with the data leads.

Finally, construct the power supply of Fig. 6. I assembled my unit on a single, large heat sink, using the pins of the power transistors and a couple of
mini-terminal strips as tie points. Be sure to insulate the transistors and the negative voltage regulator. The tab on a negative voltage regulator is not ground. I recommend testing your completed power supply with a dummy load before connecting it to your nearly $\$ 1000$ worth of core stack!

Again, pay attention to the cabling between the prototype board and the core assembly. The only difficulty I encountered in getting my unit to functlon was caused because I had alternated each M (write) data lead with an E (read) data lead, and simply separating the address leads, M leads and E leads from each other eliminated the problem.

Application

Time for the moment of truth. I plugged the interface board into my Imsai, connected the two edge connectors to the core assembly and turned on the power. The absence of great quantities of smoke was a good sign.

I had addressed the core from 0000 to 3FFFH, and preliminary tests consisted of reading and writing to the core using a monitor located in high memory RAM. Everything looked good here, so I loaded BASIC and ran a few programs. So far, the core system was working just like the 2102-type RAM boards that I had been using all along.

Of course, the blg test was to turn off the power and see if the

Prototype interface card. Not realizing that the memory would draw only minimal power, I mounted the prototype power supply on a separate heat-sink assembly. It could have easily been mounted on the Vector interface card.
data would be retained. I hit the front panel STOP switch and shut off the power. After a minute I turned it back on again. Even though BASIC was still there, it refused to run. I later determined that this happened because when the Imsai 8080A was powered up, its stack pointer was set to 0000 . Since my BASIC needs a usable stack area upon restart (normally provided by the monitor when it loads BASIC), it attempts to use FFFFH (0000 minus 1) as the start of its stack.
The solution to this problem
was to install the smallest possible block of RAM ending at FFFFH (in my case a 4K board) to tide BASIC over until it initialized the stack pointer for itself. I was able to shut the machine off, turn it on days later and find that BASIC was still all there (along with the user program, provided that I had originally initialized BASIC for 16 K), intact and ready to run.
As indicated, I hit STOP before powering down to place the CPU in a wait state, so the CPU would not initiate a memory cycle when power might not

Ampex $8 K$ memory card. The $8 K$ board is hard to distinguish from the 16 K version, which is the same size but contains several additional core driver chips. (Photos courtesy of Electravalue Industrial, Morris Plains NJ)

Fig. 5. A pin-out drawing of the core assembly edge connectors, looking at the edge of the board with the component side up.

Fig. 6. The schematic diagram of the core assembly power supply. In addition to this, another 340T-5 or 7805 is mounted on the prototype board to power the interface ICs.
be available to the core system to successfully complete the cycle; this would result in lost bits. If you don't have a front panel, you can take the RST lead shown in Fig. 4 to ground before interrupting power. Grounding this lead causes the core system to inhibit further operation after the completion of the current cycle if one is in progress at the time.

It should be emphasized that when $\overline{\text { RST }}$ goes low, the core completes the current cycle and then ceases operations. The CPU, however, continues to operate, fetching and executing NOPs $(00-$ no operation instructions). Therefore, once
the $\overline{\mathrm{RST}}$ lead is brought low, don't try to take it high again without starting the CPU from a known point in the program.

The $\overline{R S T}$ input can be controlled in several different ways, either manually or automatically. An example of automatic control is a circuit that generates an interrupt in response to the loss of input ac power. A subroutine would save the 8080 internal registers in designated locations in core memory and output a low to the $\overline{\mathrm{RST}}$ lead. These registers would be restored upon power-up, allowing the program to continue execution at the point where power was lost. This sequence
would be especially effective for unattended control operations.
Fig. 7 shows the timing relationship between some of the S-100 and core control leads. This might be useful if any troubleshooting were necessary.

Conclusion

After loading and playing with my assembler for a while, I performed some experiments and found that the 16 K of core only consumed about 12 Watts ($+5 \mathrm{~V}, 1.2 \mathrm{~A}$; + $12 \mathrm{~V}, .5 \mathrm{~A}$; and $-12 \mathrm{~V}, .08 \mathrm{~A}$). This is a surprisingly low figure, much lower than the specs had indicated. The core system has also proven to be tolerant of supply-voltage variations and should run comfortably within the toler-
ances of the voltage regulators recommended for the power supply. While I mounted the three regulators and two transistors on a separate heat sink, the whole works could have been placed on the Vector prototype board.
I've been using the Ampex core for several months, as the lower 16 K of a 32 K system, to store either BASIC or an assembler. I have to reload only when I go from BASIC to the assembler or vice versa, or when one of my assembly-language programs bombs out and eats up everything in memory. My cassette recorder, which used to get quite a workout, is getting a well-deserved rest. If your application requires both speed and nonvolatile memory, these Ampex core memory systems are definitely worth considering.

[^0]Fig. 7. A timing diagram showing the relationship between some
of the S-100 and some of the core assembly control leads.

The MM57109 Number Cruncher

National Semi's MM57109 chip revisited, with specific hardware and software requirements.

Larry Bregoli
106 South Longyard Road Southwick MA 01077

After a year of scratch-building my 1802-based system, I had a tape I/O, a video display circuit (taken from a super article in 73 Magazine by Don Alexander), an ASCII keyboard and 5K of RAM. My software consisted of display programs and a monitor program of my own design (1802 software is difficult to come by), and I was ready for a math package.

Several weeks of programming later, I had a 32 -bit package, with which I could add, subtract, multiply and divide, and which took up over 1 K of memory. At that rate I would be older and grayer before I could take the \log of a number... there had to be a better way.

National Semiconductor had
the answer: the MM57109 Number Cruncher. The MM57109 is a number-oriented microprocessor and, with the proper interfacing, can be used as a versatile peripheral to another microprocessor system. The in-struction-set description of the MM57109 has been discussed previously in an article by Dr. Adam Osborne in the May 1978 Kilobaud ("Number Crunching: Two Hardware Solutions," p. 84) and will not be repeated here. This article will discuss the hardware interfacing of the MM57109 with a microprocessor and the necessary software to obtain an operating system.

Table 1 is a listing of the MM57109's instruction mnemonics and an op code listing in octal and hexadecimal. This will be needed for software development later in this article, but a review of the listing should give you an idea of the power and possibilities of using the MM57109.

Fig. 1. Pin-out diagram of the MM57109.

With the circuitry and software described in this article, full eight-digit floating-point and scientific notation capability to $10^{ \pm 99}$ is attainable. Trigonometric, inverse trigonometric functions and exponential functions are available, along with a four-function memory. ROLL and POP instructions are made available to manipulate a four-register stack if needed, along with a PI command and literal number usage.

Sound like a hand-calculator advertisement? If it does, it's probably because the MM57109 will allow you to use your micro as a super programmable calculator. If that doesn't turn you on, think about programming with FORTRAN-type statements such as

$$
[X \cdot(A \cdots B-Y \cdots 2)(P \cdots 2+Y \cdots 2)]
$$

or
[sin(sqrt(A + B**0.3))]
all in less than 1 K of memory.

The Hardware

Fig. 1 shows the pin-out diagram for the chip. A brief description of the pin functions gives a feeling for the device's operation. Pins 1 through 5 and 24 are instruction input lines and accept instructions from the data input lines. The output ISEL line indicates whether the input is an instruction (ISEL = 1) or data (ISEL=0). ISEL also goes low for most two-word instructions during the second word and for input and output instructions; this will be discussed later.

Pin 7 is the oscillator input line and should be operated between 320 and 400 kHz . Pin 6 is a sync output and goes low once every four oscillator cycles. Pins 9, 10 and 12 are designated HOLD, R/W and RDY, respectively, and are the handshaking signals used to interface with a microprocessor. Pins 22 and 23, labeled DAS (digit address strobe) and $\overline{B R}$ (branch), respectively, are also handshaking signals and will be discussed later.

Pins 14 and 16, labeled F2 and $F 1$, respectively, are in-struction-settable flags. Pins 17 through 20 are data output lines and are used to output the BCD data. Pins 25 through 28 are digit address lines that output sequential addresses for each BCD number output (these lines are not used in the present application).

Pin 13 is an ERROR line and goes high if a mathematical error is committed. Pin 11 is used for power on reset (POR). Pins 15 and 21 are $\mathrm{V}_{\mathrm{ss}}(+5 \mathrm{~V})$ and $\mathrm{V}_{\text {dd }}$ (-4 V), respectively. The chip can run with $\mathrm{V}_{\text {ss }}$ at 9 V and $\mathrm{V}_{\text {dd }}$ at zero volts, but for use with most systems using micros, $\mathrm{V}_{\text {ss }}$ can be operated at +5 V and $V_{d d}$ at $-4 V$.

All pins are, then, 5 V -compatible with the exception of POR and HOLD, which will be discussed later in the "Circuit" section. Notice I didn't say TTLcompatible, since some outputs of the MM57109 do not have enough drive capability to drive TTL directly. This was not
a problem for the present application since CMOS logic is used, and all outputs of the MM57109 are capable of driving CMOS.

Fig. 2 is a block diagram for interfacing the MM57109 with a microprocessor system. As in most peripheral interfacing, an instruction or data word is placed on the bus, and an I/O device select signal is generated by the microprocessor.

In this case the device select signal latches the byte from the bus into the input latches; at this time the RDY line is high, telling the microprocessor that the number processor is ready for an input. The device select signal also puts the HOLD line low, telling the number processor to perform the instruction. RDY is then set low by the number processor telling the rest of the world that an instruction is being performed.

When the MM57109 is through with the operation, the RDY sta-

Mnemonic	Octal Op Code	Hexadecimal Op Code	$\begin{aligned} & \text { SQRT } \\ & \text { SQ } \end{aligned}$	$\begin{aligned} & 64 \\ & 63 \end{aligned}$	$\begin{aligned} & 34 \\ & 33 \end{aligned}$
0	00	00	10X	62	32
1	01	01	EX	61	31
2	02	02	LN	65	35
3	03	03	LOG	66	36
4	04	04	SIN	44	24
5	05	05	cos	45	25
6	06	06	TAN	46	26
7	07	07	INV SIN*	40,44	20,24
8	10	08	INV COS*	40,45	20,25
9	11	09	INV TAN*	40,46	20,26
DP	12	OA	DTR	55	2 D
EE	13	OB	RTD	54	2 C
CS	14	OC	MCLR	57	2 F
PI	15	OD	ECLR	53	2B
EN	41	21	JMP*	25	15
NOP	77	3 F	TJC	20	10
HALT	17	OF	TERR**	24	14
ROLL	43	23	TX $=0$ *	21	11
POP	56	2E	TXF**	23	13
XEY	60	30	TXLTO*	22	12
XEM	33	1B	IBNZ	31	19
MS	34	1 C	DBNZ	32	1A
MR	35	1D	IN^{*}	27	17
LSH	36	1E	OUT*	26	16
RSH	37	1 F	AIN	16	10
+	71	39	SF1	47	27
-	72	3A	PF1	50	28
x	73	3B	SF2	51	29
1	74	3 C	PF2	52	2A
YX	70	38	PRW1	75	3D
INV +*	40,71	20,39	PRW2	76	3E
INV -*	40,72	20,3A	TOGM	42	22
INV X*	40,73	20,3B	SMDC*	30	18
INV I*	40,74	20,3C	INV	40	20
1/X	67	37	indicates a	-word	

Table 1. MM57109 mnemonic and operation codes.
tus line goes high, again resetting the HOLD line to its high state through the handshaking circuits. The high status of the

RDY line tells the host microprocessor that the MM57109 is ready for the next instruction. If the instruction is an OUT, the
answer is sent out one digit at a time with an R / \bar{W} pulse for each digit. The R/W pulse latches the $B C D$ digit into the output latch.
A digit address status signal, $\overline{\text { DAS, }}$ occurs before and after each digit sent out and can be used to store the present digit into RAM. When all digits have been sent out and stored in RAM, the RDY signal goes high as in other instructions, telling the microprocessor the output is over.

Fig. 3a shows the circuitry to interface the MM57109 with an 1802 microprocessor. The TPB and NO lines should be the only lines unfamiliar to users of micros other than the 1802. NO is simply an 1802 designation for one of three I/O select lines set high for one machine cycle when selected. TPB is a clock pulse that goes high once each machine cycle at a time when the data on the bus is valid.

The Circuit

Now that we're all on common ground, let's go through the circuit, starting with a call from the host microprocessor for an operation by the MM57109. When this happens the host micro sends out a memory read (MRD) signal and a simultaneous I/O signal (NO) to transfer a memory byte from memory to the system bus.

The combination of these

Fig. 2. Block diagram of number processor interfacing.

Fig. 3a. MM57109 interfacing circuitry.
two signals and the logic performed by the NAND gate IC10A causes a high level to appear at pin 4 of inverter IC1. This closes six of the eight 4016 switches in ICs 5 and 9 , placing the bus byte at the inputs of the 4042 in put latches IC4 and 8. The latching strobe (TPB) occurs when the bus byte is valid and, through the logic performed by NAND gate IC10C, latches the data into the input latches.
Notice that at this time IC10B and its inverter are applying the opposite logic level to the four output Tri-state switches in IC7, maintaining these switches in their Tri-state mode.

With the bus byte safely latched up in the input latches, let's digress a little and look at the operation of pins 9 and 11 of the MM57109. These lines are the HOLD and power on reset (POR) lines I promised I would discuss. Both of these lines must operate with a low logic level of -4 V when V_{ss} is 5 V . This is accomplished by using
two of the Tri-state switches in IC9. One side of each of these switches is connected to V_{ss}, and the other side is connected through a 4.7 k resistor to $\mathrm{V}_{\text {dd }}$.

When a high logic level is applied to the control line of one of these Tri-state switches, the switch closes and 5 V is applied to the selected line of the MM57109. When a low logic level is applied to the switch control line a -4 V is applied to the MM57109 through one of the 4.7 k resistors. The POR line, therefore, goes to 5 V at start-up and, after a time period determined by the 15 k resistor and 0.1 uF capacitor at pin 5 of IC2, goes to -4 V . The minimum time at 5 V set by the RC circuit should not be less than eight oscillator clock periods.
The bus byte, as you'll remember, was just latched up in the input latches by a strobe signal at pin 8 of NAND gate IC10C. This signal also clocks the D flip-flop IC11B, causing \bar{Q} to go low bringing the HOLD
line to its -4 V low level. Recall from the block diagram discussion that this causes the number processor to start its operation, and RDY goes low.

At the end of the instruction or data-entry operation, the MM57109 puts RDY high again to indicate end of operation. This clocks IC11A, which, in turn, resets IC11B, causing the HOLD line to return to its high state. The SYNC output of the MM57109 resets IC11A.
You're probably wondering why the D input of IC11A is connected to ISEL. The reason is that there is more than one RDY pulse for all two-word instructions and for the input and out-
put instructions in the MM57109 instruction set.

In order to use these instructions, the first RDY pulse must be ignored or HOLD will go high in the middle of a two-word instruction. Fortunately, the ISEL line is low during the first RDY pulse of a two-word instruction and goes back high just before the second RDY pulse arrives. When the ISEL line is low, IC11A will not change state when the intermediate RDY pulse arrives.

To get data back from the number processor, an $\alpha \mathbf{L} T$ imstruction code is passed to the MM57109, which, in turn, starts to output BCD data to the 4042 output latch IC6. Each BCD dig-

IC Number	IC Type	5 V Pin	Gnd Pin
$5,7,9$	4016	14	7
$4,6,8$	4042	16	8
11	4013	14	7
10	$74 C 00$	14	7
2	4050	1	8
1,3	4049	1	8

Fig. 3b. Power and ground connections for ICs in Fig. 3a.

RADIO SHACK COMPUTER OWNERS TRS-80 MODEL I AND MODEL II

TRS80
 MONTHLY NEWSLETTER

- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING•GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS AND MORE

PROGRAMS AND ARTICLES PUBLISHED IN OUR FIRST 12 ISSUES INCLUDE THE FOLLOWING:

- A COMPLETE INCOME TAX PROGRAM (LONG AND SHORT FORM)
- INVENTORY CONTROL
- STOCK MARKET ANALYSIS
- WORD PROCESSING PROGRAM (FOR DISK OR CASSETTE)
- LOWER CASE MODIFICATION FOR YOUR VIDEO MONITOR OR PRINTER
- PAYROLL (FEDERAL TAX WITHHOLDING PROGRAM)
- EXTEND 16-DIGIT ACCURACY TO TRS 80 FUNCTIONS (SUCH AS SQUARE ROOTS AND TRIGONOMETRIC FUNCTIONS)
- NEW DISK DRIVES FOR YOUR TRS 80
- PRINTER OPTIONS AVAILABLE FOR YOUR TRS- 80
- A HORSE SELECTION SYSTEM***ARITHMETIC TEACHER
- COMPLETE MAILING LIST PROGRAMS (BOTH FOR DISK OR CASSETTE SEQUENTIAL AND RANDOM ACCESS)
- RANDOM SAMPLING***BAR GRAPH
- CHECKBOOK MAINTENANCE PROGRAM
- LEVEL II UPDATES***LEVEL II INDEX
- CREDIT CARD INFORMATION STORAGE FILE
- BEGINNER'S GUIDE TO MACHINE LANGUAGE AND ASSEMBLY LANGUAGE
- LINE RENUMBERING
- AND CASSETTE TIPS, PROGRAM HINTS, LATEST PRODUCTS COMING SOON (GENERAL LEDGER, ACCOUNTS PAYABLE AND RECEIVABLE, FORTRAN 80 , FINANCIAL APPLICATIONS PACKAGE, PROGRAMS FOR HOMEOWNERS, MERGE TWO PROGRAMS, STATISTICAL AND MATHEMATICAL PROGRAMS (BOTH ELEMENTARY AND ADVANCED) . . AND

WORD PROCESSING PROGRAM (Cassette or Disk)
For writing letters, text, mailing lists, etc., with each new subscriptions or renewal.

4 LEVEL II RAM TEST -

Checks random access memory to ensure that all memory locations are working properly.

it is latched into the output latch with the R / \bar{W} line. At the end of each digit there is a $\overline{\text { DAS }}$ pulse, which is used by the software to clock the latched BCD digit into memory. IC10B provides the logic to put the latched digit onto the bus while the host micro is supplying a memory write ($\overline{M W R}$) pulse to the appropriate memory chips to write the data into memory.

The status lines RDY, $\overline{\mathrm{BR}}$, $\overline{\mathrm{DAS}}$ and FLAG-2 in my system are connected to flag inputs on the 1802 and are used to communicate information that is needed by the software, which will be discussed in a separate section. The ERROR status line can be connected to a front panel LED to indicate any math errors committed. FLAG-1 is not used in my system but can be used if needed as a softwaresettable output.

When interfacing CMOS logic with the MM57109, you need a 10k pull-down resistor at each output line of the MM57109. The lines of the MM57109 that need a resistor are labeled in Fig. 3a by an asterisk. These resistors were not drawn in for the sake of clarity in the figure.

A 10 k pull-up resistor is also needed on pin 24 as specified by the National Semiconductor instruction sheets. The clock circuit was also recommended in the instruction sheets and operates at approximately 400 kHz . I recommend that you obtain and read the MM57109 instruction sheets, which can be obtained from Tri-Tek, Inc. There is much valuable information presented in the text, including the instruction set.

A word about the instruction set in Table 1: The op code that was given in octal representation in the National Semiconductor literature has been converted to a hexadecimal listing for the convenience of those
using hex-oriented micros.
The construction is not difficult to do. I used wire-wrap techniques and IC sockets throughout and put the whole circuit on a 4 inch $\times 4.5$ inch Radio Shack PC board with a 22-pin edge connector. Discrete components were soldered to Vector T49 wirewrap terminals and wirewrapped into the circuit.

Remember that the ICs are CMOS devices, and, although most of these devices are inputprotected nowadays, a static shock can still blow one out. Be sure to ground any unused inputs on the CMOS chips. Any floating inputs may cause excess heating of the chip. Before plugging in the MM57109, check the power supply voltages for proper values. An error here can be expensive. If the power supply voltages look OK, shut off the power and plug in the chips.

The system may be tested by temporarily connecting an LED to the FLAG-2 line as shown in Fig. 4 or by monitoring the line with a voltmeter after the set-flag-2 (SF2) instruction is executed. The software routine for execution of the SF2 test instruction is given in Fig. 5.
If the LED does not light, check the outputs of the instruction latches for the proper binary code. If the code is not proper, the problem could be the software or the input hardware; if the code is proper, the problem is probably the oscillator or the MM57109 wiring.

When the LED lights and you wake up your household by shouting "EUREKA," it's time to start on the software math package.

The Software

The software that follows will require three temporary stacks. One stack, which I call a SEQUENCE or just S stack, is where

Fig. 4. F2 test circuit.
the program to be run by the MM57109 is assembled. The second temporary stack is called the PRECEDENCE or P stack and is used to set the mathematical precedence of the operators (**,*,l, +,(,),) in your math statement. For example, if your math statement was

$[A \cdot B+A \cdot(B \cdot D+C \cdot \cdot E)]$

then the computer must know that all operations within the parentheses must be completed first and, within any given parentheses, what operators have precedence.

The above math statement is written in what is called Infix Notation, that is, the operators are between the operands or numbers to be operated on. The MM57109, however, can only solve problems presented to it in Reverse Polish Notation or RPN. A conversion from Infix to Reverse Polish Notation must therefore be performed. This is not unusual; most large computers work in Polish Notation at the machine level since it is very efficient from a computer's standpoint. The above math statement in RPN, however, would look like
[AB•ABD•CE* $+\cdot \cdot+$]
which is fine if you're a computer... l'd rather let my micro convert for me.
The P and S stacks are of variable length depending on the length and complexity of your math statement. A third, temporary, but fixed-size, stack is used to store the answer from the MM57109 while it is being converted to a format for display. I call this the answer or A stack, which is only 12 bytes long.

The on-screen format that I use for the math statements is to begin and end each statement with the brackets, []. This allows the computer to tell where things begin and end while it is scanning a statement. I also use spaces between operators and numbers to distinguish between them. Parentheses are used to tell which section of the problem to do first. For operators such as the trig and exponential functions, I use parentheses to con-

Fig. 5. Set F2 test program.
tain the argument, for example, $\sin (A+B)$.
The method I use to recognize operators, such as sin, log, ROLL or POP, for example, is to sum up the hex values of the ASCII letters as the computer scans the statement until a space or (is encountered. The resulting number is then found in a lookup table, and the corresponding MM57109 instruction code is obtained.

Some trial and error was used to obtain a unique value for the hex sum of each mnemonic chosen. Table 2 is the lookup table used in my system but is definitely not the only one that could be used; it is offered only as a guide.
You'll notice if you look back at Table 1 that there are seven inverse statements such as the inverse trig functions available. I handle these by preceding the operator with an "I," for example, $I \sin (A+B)$. When the computer finds an "l" in the math statement, it immediately sets a flag to indicate an inverse function, then continues to sum the rest of the ASCII values in the operator (not including the "l").
The use of letters to represent fixed numbers is handled by designating an area on the display to write the values of these numbers along with their literal values. I use the top three lines of my display to do this.
In the math statement I use an apostrophe before each literal number so the computer will recognize this letter as a literal number. For example, when the computer is scanning a math statement and ' Y is encountered, it immediately starts scanning the top three lines of the display for Y . When it finds

Mnemonic	Hex Sum
+	$2 B$
+	$2 D$
$*$	$2 A$
I_{*}	$2 F$
In	54
exp	DA
log	$4 D$
sin	42
cos	$4 A$
tan	45
sqrt	43
sq	CA
EE	E4
SMDC	$8 A$
TOGM	27
ECLR	37
	26

Hex Op Code	Mnemonic	Hex Sum	Hex Op Code
39	XI	A1	37
3A	TENX	3 F	32
3B	ROLL	39	23
3 C	POP	EF	2E
38	LSH	E7	1 E
35	RSH	ED	1 F
31	RAD	D7	2D
36	DEG	D0	2 C
24	MCLR	2E	2 F
25	MS	AO	1 C
26	MR	9 F	10
34	XEM	EA	1B
33	XEY	F6	30
OB	SF2	CB	29
18	PF2	C8	2A
22	dM	B1	1A
2B	iM	B6	19

Table 2. Operator lookup table.
the Y , it takes the number following and puts it in the S stack as it would if the number were originally contained in the math statement. The computer then returns to the math statement to continue the scan.

If a lowercase p is found in the scan, the computer recognizes it as pi and puts ODH into the S stack, preceded by a NOP instruction, 3FH. The need for the NOP instruction will be discussed later.
The last formatting item is the display of the answer. After the right-hand bracket,], at the end of a math statement, I type in an equal sign. This starts the scan of the math statement by backing up until the left-hand bracket, [, is found. The direction of the scan is then reversed, and the statement is scanned from left to right.
When the end bracket,], is encountered, an OUT instruction is put in the S stack, and the assembled math statement in the S stack is fed to the MM57109 one instruction at a time. When the OUT instruction is completed the answer will be contained in the A stack. The A stack is then converted to an ASCII number and placed on the display following the equal sign.

Each time an operand is put on the S stack it is preceded by a NOP instruction as mentioned above for the pi operand. The purpose of the NOP instruction is to avoid the possibility of two operands being placed on the S stack, one following the other,
and the MM57109 misinterpreting them as a single number. The NOP instruction does nothing but end number entry.

Fig. 6 shows an overall flowchart for the MM57109 math package. A few blocks in Fig. 6 should be looked at in more de-
tail since they involve some MM57109 instructions not discussed previously. One of those is the Operand subroutine, which allows for the use of negative numbers, decimal points and power-of-ten notation. Fig. 7 shows the flowchart for this subroutine.
Suppose a number in the math statement is -12.34 E 56. The computer will pick up the first term and set the minus flag. The next two terms will have the leading 3 s stripped off and be put into the S stack as 01 and 02. When the decimal point is encountered, OA will be placed on the S stack. The next two numbers will be entered on the S stack as 03 and 04-up to eight digits may be used in the mantissa.
When the E is picked up, a

Fig. 6. Flowchart of MM57109 math software.

Fig. 7. Flowchart for OPERAND subroutine.

The software then allows the first DAS logic low pulse to pass by, then waits for the next $\overline{\text { DAS }}$ pulse before putting any data in memory. When this pulse arrives, the first digit in the answer is stored in the A stack. The routine then waits for the $\overline{D A S}$ pulse to go high again before proceeding.

The program then starts to test for a low on the DAS line or a high on the RDY line. If a $\overline{D A S}$ pulse is encountered, another digit is placed in the A stack. This continues until a high RDY that causes an exit from the program is encountered, since at this time all digits have been sent out.

Two output data formats are used by the MM57109. The chip starts up in the floating-point mode and may be switched to scientific notation by execution of a TOGM instruction. The number of digits in the mantissa may also be selected by execution of an SMDC instruction,
along with a BCD number, indicating the number of digits. If an SMDC instruction is not performed, the mantissa will contain eight digits.
If the output data format is left in floating point, then the first digit sent out will be a sign digit. For a positive number this digit will be zero, and for a negative number it will be a binary 8. (Note that since the four most significant bits of the system bus are not used during the data output mode of the MM57109, they will go to their unprogrammed logic level. In my system they are all ones causing each output number to have an F preceding it. For example, the binary 8 above would be F8 in the answer stack.)

The second digit out contains a binary number indicating the digit number after which the decimal point should be placed. For some reason which I have yet to discover, the binary number with decimal

Fig. 8. Flowchart for OUT subroutine.
test is made to see if the mantissa minus flag was set. If it was, $O C$ (change sign instruction) is then sent to the S stack-followed by the numbers 04 and 05 . The minus flag would have been set again for the negative power of ten, and a second change sign instruction would be placed at the end of the converted operand. The number in the sequence stack would then look like

3F,01,02,04,03,04,0C,0B,05,06,0C.
The OUT subroutine contains the software to accept the BCD digits contained in the answer as the MM57109 puts them out. The $\overline{\text { DAS }}$ and RDY status lines are monitored by this program to keep the output timing correct. When the MM57109 receives an OUT instruction, the RDY line goes low until all digits have been sent out. The DAS line sends a logic low pulse out after each digit and one pulse prior to the first digit.

Fig. 8 shows the flowchart for the OUT subroutine. Upon entering the routine a space in memory called the A stack, which will store the answer, is pointed to. The OUT instruction is then sent to the MM57109.

Fig. 9. Flowchart to display a floating-point number.

MICRO CHESS

The Industry's First Gold Cassette Over 50,000 Sold

MICROCHESS is the industry's best selling computer game. And no wonder-because MICROCHESS gives you more than just a chessplaying program: A convenient, foolproof set of commands and error checks ... complete instructions in a $51 / 2^{\prime \prime}$ by $81_{2 \prime \prime}^{\prime \prime}$ booklet ... a cassette that's guaranteed to load, with disk versions coming soon ... and several levels of difficulty to challenge you not just once, but time after time. It's available through well over three hundred computer stores and many mail order sources ... always
originating from Personal Software. What's more, every Personal Software product is selected to give you these same benefits of easy availability, reliable cassettes, readable documentation, a carefully thought out user interface ... and most important, continuing challenge and enjoyment, not just once but time after time. If you haven't already, order your own gold cassette: MICROCHESS, by Peter Jennings, for 8K PETs, 16K APPLEs, and 4K Level I and II TRS-80s

In Real Time Action

A Tour De Force Strategy Games
shots as they come towards you-lower your shields just long enough to fire your phasers, betting that you can get them back up in time! With nine levels of difficulty, this challenging game is easy to learn, yet takes most users months of play to master. ADD SOUND EFFECTS with a simple two-wire hookup to any audio amplifier; the TRS-80 also produces sound effects directly through the keyboard case, to accompany spectacular graphics explosions! You won't want to miss this memorable version of a favorite computer game...

ELECTRIC PAINTBRUSH by Ken Anderson for 4K Level I and IITRS-80s: Create dazzling real time graphics displays at speeds far beyond BASIC, by writing 'programs' consisting of simple graphics commands for a machine language interpreter. Commands let you draw lines, turn corners, change white to black, repeat previous steps, or call other programs. The ELECTRIC PAINTBRUSH manual shows you how to create a variety of fascinating artistic patterns including the one pictured. Show your friends some special effects they've never seen on a TV screen!. $\$ 14.95$

BLOCKADE by Ken Anderson for 4 K Level I and II TRS-80s is a real time action game for two players, with high speed graphics in machine language. Each player uses four keys to control the direction of a moving wall. Try to force your opponent into a collision without running into a wall yourself! A strategy game at lower speeds, BLOCKADE turns into a tense game of reflexes and coordination at faster rates. Play on a flat or spherical course at any of ten different speeds. You can hear SOUND EFFECTS through a nearby $A M$ radio-expect some razzing if you lose!. 14.95

GRAPHICS PACKAGE by Dan Fylstra for 8K PETs includes programs for the most common 'practical' graphics applications: PLOTTER graphs both functions and data to a resolution of 80 by 50 points, with automatic scaling and labeling of the axes; BARPLOT produces horizontal and vertical, segmented and labeled bar graphs; LETTER displays messages in large block letters, using any alphanumeric or special character on the PET keyboard; and DOODLER can be used to create arbitrary screen patterns and save them on cassette or in a BASIC program.

WHERE TO GET IT: Look for the Personal Software ${ }^{\text {Tw }}$ display rack at your local computer store. If you can't find the product you want, you can order direct with your VISA/Master Charge card by dialing 1-800-325-6400 toll free (24 hours, 7 days; in Missouri, dial 1-800-3426600). If you have questions, please call 617-783-0694. Or you can mail your order to one of the addresses below, as of the dates shown.

592 Weddell Dr.
Sunnyvale, Calif. 94086
equivalent 11 indicates the decimal point is placed to the right of the most significant digit, while a decimal value of 10 indicates the point is after the second most significant digit, etc.

The next eight digits are BCD numbers representing the numerical answer with the most significant bit first. The number - 12.345, therefore, would be represented in the A stack as

F8 FA F1 F2 F3 F4 F5 F0 F0 F0
with the mantissa count set to eight. Fig. 9 is a flowchart for converting the A stack into a floating-point display.

The output format for a number in scientific notation is somewhat different. The first two digits in this case are the most significant exponent digit and the least significant exponent digit. The third digit is a sign digit which contains the
sign of the mantissa and exponent. This digit is zero if both mantissa and exponent are positive; it is a one if the exponent is negative and the mantissa, positive; it is a nine if both are negative; and it is an eight if only the mantissa is negative. The fourth output digit is not used. The next eight digits contain the mantissa with the decimal point location always after the most significant digit. The number -1.2345000 E01 would look like

F0 F1 F8 XX F1 F2 F3 F4 F5 F0 F0 F0 in the A stack.

The flowchart shown in Fig. 11 describes the subroutine that determines the precedence of the operators in the math statement. There is nothing in it unique to the MM57109 architecture, and it is included only as a guide to help you complete
your software package.
I will recommend again that you get the National Semiconductor literature on the MM57109 to assist you in both the hardware and software aspects of this project. Another valuable reference source from which several concepts for this article were obtained is a book called Digital Networks and Computer Systems by Taylor L. Booth, published by John Wiley and Sons, Inc.

When you've completed your software, which should take about three pages of memory, you will have added a capable math package for performing
computations with your micro.
The branch instructions available with the MM57109 are not put to use with this simple software package. They are, however, versatile instructions, and I have put them to use in a small software assembler program, using many of the same subroutines discussed in this article. If you intend to do this also, you can use the $\overline{B R}$ status line to indicate if the branch statement is true or false. Ah . . . but this is another subject.
The capabilities of the present software should provide plenty of challenge for solving the problems of the world.

Fig. 10. Flowchart to display a number in scientific notation.

Fig. 11. Flowchart of PRECEDENCE subroutine.

With these five disks, I can turn your TRS-80 into a serious computer.

My name is Irwin Taranto, and I know what I'm talking about.
I've been making computers work ever since they had vacuum tubes in them, and I've put the first computer into more than 300 different businesses.

Over the years, I've learned a few things.
For instance, I've learned that the new microcomputers like the TRS-80 are really elegant pieces of hardware. The price is deceiving. Given the right programs, they can jump through hoops.

But finding the right programs isn't all that easy. You can flip through the pages of this magazine and find 50 ads for TRS-80 programs. Granted, a good many of them are for fun and games, but you can still find quite a few offering business programs.

They aren't like mine, though.
Four of these are the genuine Osborne \& Associates systems, originally designed for the $\$ 30,000$ Wang computer. I've made a few minor modifications on them, and now they work on a $\$ 4000$ TRS-80. The fifth program is one I added myself.

Here's what's on each disk:

THE ON-LINE, INTERACTIVE OSBORNE PROGRAMS

Accounts Payable: an invoice-linked system that can calculate and print checks, make reports, and link fully to the general ledger. Accounts Receivable: also invoice-linked, it can keep track of billed and unbilled invoices, open and closed items and aging. It can print a statement and link to the general ledger.
General Ledger: this handles more than 1750 transactions on 200 different accounts and keeps track of them by month, quarter, year and the previous three quarters. Available with or without Cash Journal option.
Payroll: it keeps the files, computes pay and deductions, prints forms and checks, figures taxes, overtime and piecework pay, and prints the 941-A and $\mathrm{W}-2$ forms.

AND AN ON-LINE, INTERACTIVE TARANTO PROGRAM
Inventory Control: a custom-tailored program that looks after up to 20 sizes of each of 1300 items - a million items in all. It gives an immediate readout on any item inquiry, including quantity and dollar total.

These programs are marvels of efficiency. They're fully-documented, and you can buy the books locally or from me. On the Osborne programs, my contribution was simply this: I made them work on the TRS-80, and if you buy them from me, I'll make them work for you.

If you're skeptical on that point, call the number below and we'll give you the names of some of the people who've already bought all over the world. Then you can call them up and hear what they have to say.

These programs only cost $\$ 99.95$ each. (The Cash Journal option on the General Ledger adds another \$50.) For that you get the disk, all the instructions you need, and my telephone number. If you call, we answer all your questions and make sure everything's working smoothly. If your question's tough enough, I'll talk to you personally.

Because, as I said, I plan to turn that TRS-80 of yours into a serious computer.

[^1]

It started in California and traveled east. Gasoline has become precious. What better time for a program to keep track of fuel consumption, fuel economy and miles driven?

```
100 REM A MILEAGE CALCULATOR
110 REM BY PHIL FELIMMN AND TOM RUGG COPYRIGHT 1978
120 M|=60:MR=75:N=0
130 DIM DS(MR),D(MR),G(MR),H(MR)
150 PRINT CHRS(147):PRINT TAR(16);CHRS(18);"MILEAGE":PRINT:PRINT"COMMANIS"
160 PRINT:" - READ OLD MASTER FILE FROM CASSETTE*
170 PRINT" 2 - INPUT DATA FROM TERHINAL"
180 PRINT * 3 - WRITE NEW MASTER FILE TO CASSETTE"
190 PRINT" 4 - DISPLAY MILEAGE DATA":PRINT" 5 - TERMINATE PROGRAM":PRINT
200 INPUT" ENTER COMMAND BY NUMEER";K:IF R<1 OR R\5 THEN 150
210 ON R COSUB 250,300,500,600,800:GOTO 150
*50 R&="READING":GOSUB 850:OPEN 5,1,0:INPUT*5,TS:PRINT"READING FILE: ";T&
25S INPUT*5,N:IF NMMR THEN PRINT "*** TOO MANY FILES ON TAPE":END
270 NEXT:PRINT:PRINT N;" DATA RECORDS READ":CLOSE 5:GOSUB 920:RETURN
300 IF N=HR THEN 470
310 PRINT:PRINT"ENTER THE FOLLOWING DATA AS REQuESTED"
320 PRINT* - DATE (E.G. 1/30/78)"
325 PRINT" - ODOMETER READING (MILES)
N=NH:PPINT: LNPHT"LOTE":
*) N=N+1:PRINT:INPUT"TATE";Rs:Rs=LEFTS( R$,8):IS(N)=Rs
350 INPUT"ODOMETER";R:IF R<0 OR R>999999 THEN 350
GOSUR 940:D(N)=R:INPUT"# GALLONS";R:IF R<O OR R>9999 THEN 360
370 COSUB 940:G(N)=R:PRINT:PRINT TAR(3);"INPUT DATE: ";DS(N)
380 PRINT TAR(3);"CHECK ODOMETER:";IIN N):PRINT TAB(13);"GALLONS:";G(N)
400 PRINT:PRINT SPC(10); - IS INPUT OK ? -*:PRINT
410 INFUT" ( Y=YES, N=NO, F=YES AND FINISHED)";Rs:R $=LEFTS(RS,1)
20 IF R s="N" THEN N=N-1:PRINT:PRINT" REDO LAST IATA":GOTO 340
430 IF R"="F" THEN RETURN
50 IF N=MK THEN T7O
450 IF N=MR
470 PRINT:PRINT"*** NO MORE DATA ALLOWED":GOSUB 920:RETURN
500 IF N<1 THEN PRINT:PRINT"*** NO DATA TO WRITE":GOSUB 920:RETURN
510 R&="WRITING":GOSUB 850:PRINT:INPUT"NAME FOR FILE";T&:K=N:IF N>MW THEN K=MW
520 OPEN 5,1,1:PRINT #5,TS:PRINT*5,K:K=1:L=N
530 IF N MHA THEN K=N-MW+1:PRINT" - ONLY LAST";MW;"UALUES WILL BE WRITTEN
540 FOR J=K TO L:PRINT*5,DS(J):PRINT*5,M(J):PRINT *5,G(J)
550 POKE 59411,53:Z=T1
$50 IF T1-2<S THEN 560
600 IF N<=1 THEN PRINT:PRINT**** NOT ENOUGH DATA*:GOSUB 920:RETURN
10 H(1)=0:FOR J=2 TO N:IF G(J)=0 OR G(J-1)=0 THEN H(J)=0:GOT0 640
620 R=(LI(J)-D(J-1))/G(J):IF R<0 OR R>9999 THEN R=0
630 GOSUB 940:M(J)=R
40 NEXT:K=-17:L=0
650 K=K+18:L=L+18:IF L>N THEN L=N
660 PRINT CHFS(147);" DATE ODOMETER GALLONS MPG"
670 B=2:U=4:GOSUB 750:B=4:U=8:GOSUB 750:B=3:U=7:GOSUB 750:B=6:U=3:GOSUB 750
680 PRINT"::FOR J=K TO L:PRINT DS(J);:R=D J):B=16:GOSUR 770
00 IF L=N THEN PRINT"HIT RETURN KEY FOR COMMANID MODE":GOSUR 960:RET
710 PRINT"HIT RETURN KEY TO CONTINUE":GOSUB 960:GOT0 650
750 PRINT SPC(R);:FOR J=1 TO U:PRINT CHR$(197);:NEXT:RETURN
770 a=LEN STRS(INT(R))):IF R>O AND R<1 THEN }a=
780 PRINT TAR(B-Q);R;:RETURN
800 ENLI
850 PRINT:PRINT"1) POSITION CASSETTE TAPE FOR ";R&;"*
860 PRINT"2) PRESS THE CASSETTE STOP KEY."
70 PRINT-3) PRESS THE RETURN KEY UHEN REATY..COSUE 960:RETURN
900 PRINT:PRINT "*** FATAL ERROR IN CASSETTE READ":STOP
920 FOR Q=1 TO 3000:NEXT:RETURN
940 R=R*10+.5:R=INT(R)/10:RETURN
960 GET R&:IF R $ =" THEN 960
970 RETURN
Program listing.
```

Eor many of us, automobile operating efficiency is a continual concern. This program can help by keeping track of gasoline consumption, miles driven and fuel mileage for a motor vehicle. It allows reading and writing data files with the cassette unit; thus a master data file may be retained and updated. The program computes mileage (miles per gallon, or MPG) obtained after each gasoline fill-up. A running log of all information is maintained. This enables trends in vehicle operation efficiency to be easily checked.

How to Use the Program

The program requests the following data from the operator as a record of each gasoline fillup: date, odometer reading and number of gallons purchased. The most useful results will be obtained if entries are chronological and complete, with each one representing a full gasoline fill-up.

To use the cassette features, the operator must be able to position the tape correctly for both reading and writing. The
simplest way to do this is to record files only at the beginning of a tape. One tape could certainly be used this way, with each file writing over the previous one. However, we suggest alternating between two physical tapes. This will ensure a reasonably up-to-date backup tape in case of any failure.

The program operates from a central command mode. The operator requests branching to any of five available subroutines. When a subroutine completes execution, return is made to the command mode for any additional requests. A brief description of each subroutine follows.

Read old master file: This effects the reading of previously stored data from the cassette. Any data already in memory is nullified. During the read, the name of the data file and the total number of records read are displayed.

Input from terminal: This enables the entering of data records directly from the terminal. This mode is used to provide additional information after a cassette read and to enter

This is a chapter from the book 32 BASIC Programs for the PET Computer by Microcomputing Associate Editors Tom Rugg and Phil Feldman. It's available at most computer stores or from dilithium Press, PO Box 92, Forest Grove OR 97116.

120-130 Dimensioning and variable initialization.
150-210 Command mode. Displays available subroutines and branches to the operator's choice.
250-270 Reads data from the cassette unit.
300-470 Accepts terminal input.
500-570 Writes data to the cassette unit.
600-780 Calculates mileage and displays all information.
800
850-900 Displays messages for cassette operation.
920 Delay loop.
940 Rounds numbers to nearest tenth.
960-970 Tests for operator response.
Table 1. Main routines.

```
MW Maximum number of data records to write.
MR Maximum number of data records in memory.
N Current number of data records in memory.
D$ Array of dates.
    Array of odometer readings.
    Array of gallons per fill-up.
    Array of mileage per fill-up.
    Command mode input, also prerounded numbers sent
    to the rounding routine.
R$ Temporary string variable, holds operator's input.
T$ Data file name used in reading or writing with cassette.
J Work variable, loop Index.
K,L Loop bounds
B Number of blanks used in display formatting.
U Number of underlines used in display formatting.
    String length used in display formatting.
    Cassette delay time during writing.
```

 Table 2. Main variables.
 data for the first time. The program will prompt the operator for the required information and then let him verify that it was entered correctly. A response of F to the verification request signals that no more data is to be entered.

Write new master file: This command causes the current data to be written on cassette for later use. The program requests a name for the file. When read later, this name will be displayed, allowing verification of the correct data file.

Display mileage data: This subroutine computes mileage (miles per gallon) from the available data. It formats all information and displays it in tabular form. Numbers are rounded to the nearest tenth so that four columns of information can be displayed on one line. When data fills the screen, the user is prompted to press the return key to continue the listing. When all data is dis-
played, pressing the return key will reenter command mode.

Terminate program: Ends execution and returns the computer to BASIC.

Easy Changes

Changing the value of MR in line 120 alters the maximum number of data records that the program allows. You may need to make MR smaller If you are running out of memory, or larger to accommodate additional data. MR can only be about 15 with a 4K PET. For typical data (such as in the sample run) an 8K PET will allow about 150 data records. To adjust MR, simply change its value in line 120 from Its current value of 75 to whatever you choose.

Currently, the program will write a maximum of 60 data records during the cassette write operation. This number can be altered by changing the value of MW in line 120 from its value of 60 to whatever you

RUN

MILEAGE

COMMANDS
1-READ OLD MASTER FILE FROM CASSETTE
2-INPUT DATA FROM TERMINAL
3-WRITE NEW MASTER FILE TO CASSETTE
4-DISPLAY MILEAGE DATA
5-TERMINATE PROGRAM
ENTER COMMAND BY NUMBER? 2
ENTER THE FOLLOWING DATA AS REQUESTED
-DATE (E.G., 1/30/78)
-ODOMETER READING (MILES)
-\# GALLONS BOUGHT
DATE? $9 / 28 / 77$
ODOMETER? 51051.1
\# GALLONS? 14.6
INPUT DATE: 9/28/77
CHECK ODOMETER: 51051.1
GALLONS: 14.6
-IS INPUT OK?-
($Y=Y E S, N=N O, F=Y E S$ AND FINISHED) \underline{Y} DATE?
(10 more entries are input)
($\mathrm{Y}=\mathrm{YES}, \mathrm{N}=\mathrm{NO}, \mathrm{F}=\mathrm{YES}$ AND FINISHED)? F
(the five commands are listed again)
ENTER COMMAND BY NUMBER? 4

DATE	ODOMETER	GALLONS	MPG
$9 / 28 / 77$	51051.1	14.6	0
$10 / 6 / 77$	51299.7	13.8	18
$10 / 17 / 77$	51553.8	13.1	19.4
$10 / 29 / 77$	51798	13.7	17.8
$11 / 5 / 77$	52041.9	13.3	18.3
$11 / 15 / 77$	52304.9	14	18.8
$11 / 26 / 77$	52570.8	13.7	19.4
$12 / 1 / 77$	52842.5	14.6	18.6
$12 / 9 / 77$	53048.4	11.8	17.4
$12 / 15 / 77$	53359.7	14.7	21.2
$12 / 23 / 77$	53601.2	13.3	18.2

HIT RETURN KEY FOR COMMAND MODE

(return key is pressed)
(the five commands are listed again)
ENTER COMMAND BY NUMBER? 3

1) POSITION CASSETTE TAPE FOR WRITING.
2) PRESS THE CASSETTE STOP KEY.
3) PRESS THE RETURN KEY WHEN READY. (above is duly done)
NAME FOR FILE? VOLVO77
PRESS PLAY \& RECORD ON TAPE \#1 (cassette play and record are pressed)
OK
(a subsequent run)
ENTER COMMAND BY NUMBER? 1
4) POSITION CASSETTE TAPE FOR READING.
5) PRESS THE CASSETTE STOP KEY.
6) PRESS THE RETURN KEY WHEN READY.

(above is duly done)

PRESS PLAY ON TAPE \#1
OK
READING FILE: VOLVO77 11 DATA RECORDS READ

Sample run.

Now availabbe!
TRS-80* Telecommunications with THICIIII
If you want to
Send your programs to a friend across town or even across the country!
Collect data from your store across town.
Print your time-sharing reports.
Reduce your time-sharing expenses.
. . and MORE!
Then you want . . . IFI(H)III

- Full RS232 control from keyboard - No more switches.
- Auto Error Retry - No more garbled data
- Use with time-sharing systems, hobbyist networks, other TRS-80s.
- Operates under Program Control just using LPRINT and INPUT OR Keyboard Control for messages.

Requires LEVEL II 16K, RS232 and modem
At your computer store - or send $\$ 24.95$ to:

HAYES DATA SYSTEMS, INC.
2426 Woodacres Rd.•Atlanta,Ga. 30345
Please add $\$ 1.50$ for post. \& hand. Ga. residents add 4% sales tax.
-DEALER INQUIRIES INVITED -
*TRS-80 is a trademark of Radio Shack
choose. Only the most recent MW records will be written to tape if MW is less than the number of available records when a cassette write is issued. If the number of available records is less than MW, then all the records will be written. The value of MW should not be larger than the value of MR.

If you don't care about seeing the dates, they can be removed easily. This saves a little typing on data entry and also allows more data records in a given amount of memory. To remove this feature, delete line 320 entirely and change line 340 to read:

Suggested Projects

Calculate and print the average MPG over the whole data file. The total miles driven is $D(N)-D(1)$. The total gallons used is the sum of $G(J)$ for $J=2$ to N . This calculation can be done at the end of the Display Mileage subroutine. Programming should be done between
lines 690 and 700.
Allow the user the option to write to cassette only the entries since a certain date. Ask which date and search the $D \$$ array for It. Then set MW to the appropriate number of records to write. These changes are to be made between lines 500 and 510 at the beginning of the subroutine to write on cassette.
Add a new command option to verify a data file just written to cassette. It would read the tape and compare it to the data already in memory.
Add an option to do statistical calculations over a given subset of the data. The operator inputs a beginning and ending date. He is then shown things like average MPG, total miles driven, total gallons purchased, etc., all computed only over the range requested.
Write a subroutine to graphically display MPG. A bar graph might work well.

Add a new parameter in each data record-the cost of each fill-up. Then compute cost of gasoline, miles/dollar, etc.

$$
\begin{aligned}
\text { ADVENTURE } 1 \text { - ADVENTURELAND } \\
\text { ADVENTURE } 2 \text { - PIRATE'S ADVENTURE }
\end{aligned}
$$

16K MEMORY UPGRADE KIT

- Complete kit with instructions for installation
- 100% guaranteed-if any part ever fails we replace it free
- Available for immediate delivery

NEC Spinwriter

- Includes TRS-80* interface software
- Quick change print fonts - 90-Day Warranty
- 55 characters per second, bidirectional
- High resolution plotting, graphing, proportional spacing.

TRS-80* COMPATIBLE DISK DRIVE

- Fully assembled and tested-ready to plug-in and run the moment you receive it
- 90-Day Warranty
- More capacity-40 tracks (instead of 35 tracks)

DISKETTE TRS-80* BUSINESS SOFTWARE BY SBSG

(User references supplied upon request)

- FULLY INTERACTIVE ACCOUNTING PACKAGE: Includes General Ledger, Accounts Payable, Accounts Receivable. Report generating. Well documented and fully tested by accountants. (Based on Osborne Accounting Method). Package components sold separately for $\$ 125$.
- INVENTORY II: Handles up to 1000 items per disk drive. Reports include complete activity, inventory, listing, and minimum quantity search.
- MAILING LIST NAME AND ADDRESS II SYSTEM: Use with Electric Pencil files for automatic insertion of name, address and greetings in letters. Has ability to print envelopes. Menu driven. Includes enter, delete, update, search, extract, high speed sort routines, merge and print. 40 page manual. Zip code sort is excellent for bulk mail applications.
- INTELLIGENT TERMINAL SYSTEM ST-80 III: Enables a TRS-80* to act as a dial-up terminal on any standard time sharing network. Provides a TRS-80* with control key, ESC-Key, Repeat Key, Rub Out Key, Break Key, full upper and lower case support, selectable printer output and program selectable transmission rates.
- WORD PROCESSING SYSTEM: The Electric Pencil from Michael Shrayer-works with Spinwriter.

The CPU SHOP, Inc.
 TO ORDER CALL TOLL FREE 617/242-3350

-C108

Hours: 10 AM - 6 PM (EST) Monday - Saturday
*TRS-80 is a Tandy Corporation Trademark
39 Pleasant Street, Dept. K-9
Charlestown, Massachusetts 02129
Freight collect, F.O.B.
Charlestown
Massachusetts residents add
5\% sales tax
Dealer Inquiries Invited

The Fourth Faire

Here's our annual look at some people and products at the West Coast Computer Faire.

At the end of the first day of the Fourth West Coast Computer Faire (which was held in San Francisco last May 11-13), I had a tote bag filled with about two inches of product handouts, a knapsack containing several books and even one record of computer-controlled organ music, and a pair of shoes holding two tired but doggedly persistent feet. Still, I was happy-who wouldn't be with two more days of the same to look forward to?
There is no possible way to describe the Faire. With 300 exhibitors taking up the Civic Auditorium; the downstairs Brooks Hall (itself large enough to host an entire trade fair); and several

Judy Waterman was kept busy by the constant flow of people stopping at the Kilobaud Microcomputing/Instant Software booth.
upstairs rooms, with lectures and papers being presented in four places at the same time during most of the Faire, I can only describe a small part of what I saw.

The show had no unexpected surprises; most new products were modest extensions of existing technology, some of which I knew about from reading the current month's computer magazines. But the real thrill came from seeing the actual products "in the flesh," from getting to use the equipment (or software) and talk to the people who developed it.

Atari always had a crowd around its new Atari 400 and 800 computer/game units; the most popular was a Trek-like game that had most of the fighting and moving done with
three-dimensional graphicsthe illusion of traveling through the stars was simply spellbinding. Motorola handed out information on its new 6809 microprocessor and its supporting color video interface chips. Parasitic Engineering and Micromation both showed CP/Mcompatible 8 -inch diskette drives for the TRS-80. I think Radio Shack was the only booth that denied all rumors of a new product.

Two languages dominated the software scene, PASCAL and FORTH. North Star demonstrated its University of California at San Diego PASCAL software. Ithaca Audio announced a PASCAL that compiles into Z-80 machine code. And Western Digital displayed its PASCAL Microengine-unfortu-

The ever-industrious George Morrow of Thinker Toys presented the Faire with the proposed IEEE Standard for the S-100 bus. The text of this standard is printed in the July 1979 issue of IEEE Computer.

Claire Whalen of CAP Electronics (1884 Shulman Ave., San Jose CA 95124) was demonstrating Soundware, a combination of software and hardware (the little black box sitting on the PET is the hardware) available for the PET, the TRS-80 and the Compucolor II. The units make great sounds for games.

Steve Alcorn of MicroDaSys (Box 36051, Los Angeles CA 90036) says that his MicroDaSys computer is now available with either a 6800 or a 6809 chip. The TV monitor shows a dump of memory done with the MicroDaSys monitor program-but, unlike other monitors, the user can modify any byte shown on screen by simply writing over the byte's current value.

Janson Chang of Enerton, Inc. 2726 Middleborough Circle, San Jose CA 95132), explains his PA-EDU80 Z-80 based microprocessor trainer and self-learning set. The unit has an on-board $1 \mathrm{Kread-only}$ memory monitor, a solderless breadboard area and a 36 -key keypad. Prices start at $\$ 195$ for the computer board only.

Bill Ragsdale (wearing the "FORTH Dimensions" T-shirt along with the rest of the FORTH Interest Group) is the leader of the group that has put logether documentation of a standardized FORTH for all the major microcomputer chips-8080, 9900, LSI-11, PACE, 6800 and 6502. What's more amazing is that all their software is in the public domain. The group is a nonprofit organization that puts out a worthwhile newsletter priced at $\$ 5$ per year. FORTH Interest Group, Box 1105, San Carlos CA 94070.

Larry Kaplan of Atari lectured and demonstrated the Atari 400 and 800 personal computers seemingly without pause for the entire three days of the Faire, a superhuman task. The Atari 400 , which comes with $8 K$ of user memory and no expansion option, retails at $\$ 549$. 99. The expandable Atari 800, with $8 K$ of memory, an Atari 410 program recorder and an educational support module, is $\$ 999.99$. 16 K of extra memory is $\$ 249.99$, and the Atari 810 disk drive is \$749.99.

Gary Huckell of TNW Corporation 1910 Garland Drive, Palo Alto CA 94303) displays his new TNW-2000 RS-232 Serial Interface for the PET, both with and without its enclosure.

Yes, a keyboard for those of you who are all thumbs. Actually, Bill Adams (right) built this keyboard for use by people with motor disabilities, but found that small children liked it too. Mahalo Microsystems, Box 8523, Waikiki HI 96815.
nately, without a live demonstration. A quiet and diligently working FORTH Users' Group displayed extensive documentation for its exciting advanced language, presenting the Faire with an unheard-of coup: de facto industry standardization in the form of object code for the FORTH interpreter for the 8080, 9900, LSI-11, PACE, 6800 and 6502 chips.

Business systems were available but not as visible as the flashier hobbyist systems. Most of the vendors I talked to supplied the programs only, to be run on somebody else's computer; nobody seemed to be selling what is needed for this market to really lift off the
ground: a software-hardware combination backed by a single vendor.

The entire Faire, like all con-
ventions, did involve some showmanship, and those companies that put some thought (and a lot of programming time)

Janet Shropshire of North Star Computers (2547 Ninth St., Berkeley CA 94710) rests between demonstrations of their implementation of UCSD PASCAL.

Tim Quinlan (left) is appropriately dressed to be head of Mad Hatter Software. He and Pat McMahon were staffing their doublesized booth of software for the Apple II, the PET and the TRS-80. Mad Hatter Software, 900 Salem Rd., Dracut MA 01826.

The picture here is the product of a TV camera, a Vector MZ computer and two new Vector boards, the Fast Scan Video Digitizer and the High Resolution Graphics board. Vector Graphic, Inc., 31364 Via Colinas, Westlake Village CA 91361.

Loyd Dorsett and his daughter, Dallas Dorsett-Mathers, demonstrate one version of educational materials they have been supplying for 20 years. One new twist-Dorsett Educational Systems (Box 1226, Norman OK 73070) is the sole supplier of the education programs that Atari will use for its new 400 and 800 computers.

FAIRCHILD RED LED LAMPS
*FLV5057 Medium Size. Clear Case. RED EMITTING These are not retested off-spec units as sold by some of our competition These are factory prime. first quality. new units

10 FOR ${ }^{\$ 119}$ 50 FOR ${ }^{3} 4^{95}$ "WE BOUGHT 250,000 PCS." "THE COLOSSUS"
FAIRCHILD SUPER JUMBO LED READOUT
A full. 80 inch character. The biggest readout we have ever sold! Super efficient. Compare at up to $\$ 2.95$ each from others! YOUR CHOICE $\$ 149 \mathrm{EA}$ FND 847 Common Anode FND 850 Common Cathode
(6 for $\$ 6.95$)

Susan Sheridan of Compucolor (right) watches while Dawn Bell and Mark Penguin play a trial game of Othello against a Compucolor II computer. Human players beating the Compucolor program went on to play each other, with the final winner receiving a cash prize plus a trip to the regional Othello competition.

Ray Nelson of Heath Company (Benton Harbor MI 49022) is using the newly announced WH89 Package Computer. The WH89, in its standard configuration, includes two 2-80 chips (one for the video display, one for the main processor), 16 K of programmable memory, a 5 -inch diskette drive, a full keyboard and an 80 -character, 24-line video display that supports 33 graphics characters. The price, assembled, is $\$ 2295$.

Faire, it's not too early to plan your vacation around the Fifth West Coast Computer Faire, to be held in the same place next spring. See you there.
pended heavily on software for their effectiveness. Unless the manufacturers support the hardware with good software, the unsuspecting computerist will find himself or herself with an impressive piece of hardware and, perhaps, neither the skill nor the patience to make it come alive.

I'll let the pictures say the rest. For those of you not fortunate enough to make it to this

Apple II, demonstrated no less than eight applications, including black-and-white or color doodling screens, area calculation for a drawn closed curve and computer-aided schematic design. I'll let you guess which booth always had a crowd.

Another aspect of this same situation is less festive. Many of the products demonstrated -particularly those working with color or graphics-de-

MILITARY TIME FORMATI
MA1008D BRAND NEW!

NATIONAL SEMICONDUCTOR
 JUMBO CLOCK MODULE

50\% OFF SALE!

EATURES.

- FOUR JUMBO $1 /$ INCH LED DISPLAYS - 24 HR REAL TIME FORMAT - 50 OR GG HZ OPIGRALION OUTPU
- LED BRIGHTNESS CONTPO - LED BRIGHTNESS CONTROL : SLEEP \& SNOOZE TIMERS
: DIRECT LED DRIVE (LOW RFI)
- COMES WITH FUU

COMPARE AT UP TO TWICE

OUR PRICE!
MANUFACTURER'S CLOSEOUT!

16K DYNAMIC RAM CHIP
 WORKS IN TRS-80 OR APPLE II

$16 \mathrm{~K} \times 1$ Bits. 16 Pin Package. Same as Mostek 4116-4. 250 NS access. 410 NS cycle time Our best price yet for this state of the art RAM. 32 K and 64 K RAM boards using this chip are readily available. These are new, fully guaranteed devices by a major mfg . VERY LIMITED STOCK!
"MAGAZINE SPECIAL" - 8 For \$79.50

CLOCK MODULE OPTIONS MA1008 A and D MA1013
Switches and pot for all options: Switches and pot for all options: Includes:
5 push buttons
1 toggle
1 10K po
Alarm Parts (including high impedence transducer) Much more efficient than a speaker

TOSHIBA POWER AUDIO AMP 5.8 Watt RMS Typical Output. 50 to $30,000 \mathrm{HZ} \pm 3 \mathrm{DB}$. For CB's, tape decks, PA's, etc. Works off of a single supply voltage from 10.5 to 18 VDC. 10 Pin plastic DIP with special built in heat sink tab. Perfect for use on heat sink tab. Per
12VDC. With Data.

FAIRCHILD PNP "SUPER TRANSISTOR" $2 N 4402$ TO-92 Plastic Silicon PNP Driver High Current VCEO-40 HFE-50 to 150 at 150 MA FT- 150 MHZ A super BEEFED-UP' Version of the 2N3906 8 FOR $\$ 1$	G.I. FULL WAVE BRIDGE 4 AMP 600 PIV 3/4 In. Square With Lugs, \#LM-1 75c ea. 3 For \$2		COMPLEMENTARY POWER TRANSISTORS SILICON NPN AND PNP. TO-220 CASE. VCEO - 40 V PD - 30 WATTS FOR AUDIO POWER AMPS. ETC TIP29 - NPN YOUR CHOICE TIP30 - PNP 3 FOR \$1
FET SALE! 2N4304. Brand New N Channel, Junction Fet BVGD0-30V IDSS-15 MA Typ 1500 uMHOS. TO-18 Plastic Case. Mfg. by Teledyne 6 FOR \$1	EXPERIMENTER'S HEATING PLATE Large Manufacturers Surplus. $51 / 2 \times 101 / 2 \mathrm{In}$. Made of $3 / 8 \mathrm{in}$. tempered glass with heating element laminated on back. Works Rated 120 Watts. Use for any heating applications. Perfect for heating ferric chloride to increase PC board etching efficiency. Units are brand new. WHILE THEY LAST - \$2.99 each		LED BAR GRAPH AND ANALOG METER DRIVER New from National Semi. \#LM3914. Drives 10 LED directly for making bar graphs, audio power meters, analog meters, LED oscilloscopes, etc. Units can be stacked for more LED's. A super versatile and truly remarkable IC. Just out! SPECIAL PRICE: $\$ 3.99$ includes 12 Page Spec. Sheet
	Researc (OF TEXAS) RLAND, TEXAS	$0 \text { • (214) 271-2461 }$	TERMS: Add $50 ¢$ postage, we pay balance. Orders under $\$ 15$ add $75 ¢$ handling. No C.O.D. We accept Visa, Mastercharge, and American Express cards. Tex. Res. add 5\% Tax. Foreign orders (except Canada) add 20% P \& H. 90 Day Money Back Guarantee on all items.

Serial Output for the SWTP Editor-Assembler

A simple command, shown here, allows TTY machines to obtain editor or assembler output.

Marc I. Leavey, M.D. 4006 Winlee Road
Randallstown MD 21133

Users of the Southwest Technical Products Corporation's 6800 benefit from several excellent pieces of software, such as SWTP's 8 K BASIC and co-resident editorassembler. Unfortunately, while BASIC is designed to output to either serial or parallel devices, printer output from the assembler strictly goes to a parallel interface on port 7, typically an SWTP PR-40 printer. The patch described in this article changes that to an ACIA serial interface on any port. Thus, users of TTY machines, such as KSR/ASR33 , can obtain editor or assembler output with the simple PR command found in the program.

Modifying Printer Output

As written, the editorassembler (Ver. 1.01) references the printer port at two
locations. A PIA initialization routine starts at \$17B1, and the character output routine starts at $\$ 1$ A86. Changing those routines to handle an ACIA is a clear-cut task.

The initialization routine first issues a master reset to the ACIA (\$13), then sets it up for the correct clock and bit configuration (\$11). It exits the routine with the same data it would have had from a PIA. The patch program as shown lists only the changed data, except for the last instruction, which is included for clarity.

Similarly, outputting through an ACIA can be accomplished well within the space required by a PIA. In fact, six fewer bytes, which are filled with NOP instructions, are required. Although the patch is shown assembled to address port 3 , a table of port addresses is included, so that any I/O port may be used.
To use the program with these patches, just type PR as a command. All output will then be directed to the printer, except for the "ENTER PASS : 1P, 2P,2L,2T" during assembly, which will still appear on the control terminal. Now you can print out all those programs you've been meaning to send into Microcomputing, without having to call up a friend.

CCO 10				NAM	EDASPTCII	
OUC20				OPT	0	
00030			*******	******	**************	**
0 CO 40			- PATCH	FOf S	SWTPC EDI TOR-	
00050			- ASS	EMBLER	-- VER 1.01	*
00060			- TO AL	LOW US	SE OF PRINTER	*
00070			* ON A	A A LOC	CATED ON POFT	*
00080			* 3 6I	STEAD	OF P1A PR-40	*
00090				ON PO	FFT 7.)	*
00100			* EY M	ARC 1.	LEAVEY, M.D.	
00110			******	******	***************	* *
00130			*******	******	***************	**
00140			* TABL	OF PO	ORT ADDRESSES	*
00150			******	******	**************	**
0×160		8000	PORTO	EQU	\$8000	
00170		8004	PORTI	EQU	\$8004	
00180		8008	PORT2	EQU	\$8008	
00190		800 C	PORT3	EQU	\$800C	
00200		8010	PORT4	EQU	58010	
C0210		8014	PORT5	EQU	\$8014	
C0E20		8018	PORT6	EQU	\$8013	
00230		801 C	PORT 7	EQU	\$801C	
00250			******	******	**************	
00260			* IN」T	ALI 2 AT	TION OF ACIA	*
C0270			******	******	***************	**
00280	17B1			ORG	\$17B1	
00290	17B1	CE 800C	INITAL	LDX	- PORT3	
00300	1784	C6 13		LDA B	*\$13	
00310	17B6	E7 00		STA B	X	
co320	1788	C6 11		LDA B	¢511	
00330	17BA	E7 00		STA B	X	
00340	17 BC	C6 FF		LDA B	SFF	
00350	178 E	F7 01C8		STA B	SOIC8	
00370			******	*******	***************	**
00380			- 0	UTPUT C	CHARACTER	*
00370			******	******	**************	*
00400	1486			ORG	\$1A86	
00410	1 1486	CE 800C	OUTACI	LDX	- PORT3	
00420	1 A89	A7 01		STA A	1. X	
$0 C 430$	1A8B	C6 02	LOO P	LDA B	. 502	
00440	1A8D	E4 00		AND B	X	
00450	$1 A 8 F$	27 FA		BEQ	100 P	
00460	1A9 1	01		NOP	*	
00470	1492	01		NOP		NOP'S FILL
c0480	1A9 3	01		NOP		SPACE OF
00470	1 1994	01		NOP		DELETED
00500	1A95	01		NOP	*	INSTRUCTIONS
00510	1 1A96	01		NO P	*	
00520	1 1A9 7	C6 FF		LDA B	SFF	
COS30	1 1999	FE OICA		LDX	SO1CA	
00540	END					
Editor-assembler patch program.						

Interfacing SOL with a Vista Disk

Vista's dual mini-floppy running CP/M works great with SOL . . . just overcome a few problems.

Fr. Thomas McGahee
Don Bosco Tech
202 Union Ave.
Paterson NJ 07502

Along, long time ago, way back in ' 75 , I built my first computer. It was an MIL-MOD-8, based on the fabulous 8008, and as my system grew, it was my dream to someday populate my machine with 8 K of memory.

Those were simpler days, when BASIC was still a rumor that everyone was working on, and 8 K seemed like an awful lot of memory. We loaded programs with run-down TTYs or homemade optical readers at an unbelievable ten characters per second (Wow ... faster than you could type!) and stayed up nights experimenting with ways to store data on cassette tapes.

Time moved on; suddenly magazines and newsletters started making the scene, confirming my suspicions that I was not alone, and that somewhere out there, there were other intelligent life forms who were, as I was, hopelessly hooked on computering as a hobby.
Where once there had been only 8008 and home-brew TTL, 8080 s , 6800 s and other more sophisticated chips began to proliferate. Everybody seemed to be getting into the act. Languages appeared . . . BASIC for those who could afford it (or who had friends who could afford it!) and SCELBAL for us 8008 freaks.
Suddenly 8 K of memory wasn't enough. We had to have more! Many of us 8008 freaks changed over to the 8080 in desperation, simply because the

8080 could address 64 K of memory as opposed to only 16K for the 8008. Sadly, we gave up our beloved octal and entered (somewhat reluctantly) the strange world of hex.
Time continues to move on, and I recently purchased a SOL-20 in kit form for use in our computer courses here at Don Bosco Tech. The kit came with 16 K of memory, which I felt was adequate at the time. We started teaching programming using BASIC5, and it wasn't long before we had managed to devise programs that began to occupy all available memory.

To make matters worse, when we finally received our copy of 8 K BASIC, we found that it had been renamed Extended BASIC in honor of both its extended capabilities and its appetite for memory space. Memory space we had; memory we didn't.

Vista controller board.

Surveying the situation, I surmised that a mere injection of a few more Kbytes was not the answer to our problem. We needed more memory, but in addition, we needed a better storage medium than our 1200 baud tape system.

An Adequate, Inexpensive Disk System

As one who has on many occasions loaded FOCAL on a PDP-8, I can appreciate what a great advance the cassette tape is. Ten characters per second with a noisy ASR 33 TTY for half an hour just to learn you have accumulated a checksum error is a part of my past that I don't care to repeat. Cassettes are fast, but 16 K programs are long, even at 1200 baud. What we needed was a disk system.
There were several disk systems available, most of which fell into one of two categories: expensive or inadequate. Some systems had limited capabilities in terms of their disk operating system, while the better systems quite naturally demanded higher prices. Furthermore, for the type of things that we would be interested in, a system with at least two disks was a necessity.

I had seen a system operating with CP/M and had been favorably impress: with th assembler, editor and dynamic debugging tool that was included with this system. CP/M had been used with 8 -inch drives for some time, but. a version for 5 1/2-inch diskettes was recently introduced.

Most companies that were offering CP/M for the smaller drives offered the CP/M only as
an additional-cost item, but one company, Vista Computers, was offering a disk system with CP/M software for less than what many of the other companies wanted for a system without the software.

Looking into the matter, I found out that Vista was then supplying a version that only supported a single drive but would soon be coming out with a two-drive version. I placed my order for a dual-drive version of Vista with Mini Micro Mart of Syracuse NY.

Maury Goldberg of MMM explained that he only had the single-drive version, which he would send to me for now and would send the additional drive and new software along as soon as it became available. He also mentioned that he was not sure whether the Vista would run with a SOL, but that if I had any problems he would gladly exchange the Vista for another manufacturer's comparably priced disk system that he knew for sure would work with a SOL.

Being interested in the Vista as much for its software as for its price, I decided to go ahead and give Vista a try. A friend of Maury Goldberg who had done some work with a Vista and Imsai called me to give me some pointers as to how to get the Vista CBIOS integrated into my system when it arrived. He was a bit skeptical that I would be able to do it, since the SOL has no front panel and the standard procedure requires a front panel.

I explained that often software can be made to do the same things that many people do with a front panel, and, in fact, I was able to get everything done using the software approach, although I must admit that a front panel would have helped during some of the hardware debugging.

Assembly and Testing

Within two weeks I received the first disk, the interface and the documentation. Originally my documentation was missing two sections, but these were received shortly from Vista Computers. During this time I mounted the first disk in

Vista dual disk and SOL computer.
a cabinet and tested out the interface. I had ordered a kit, but Mini Micro Mart sent me an assembled controller board at no increase in price, since the first few units they had received from Vista had been assembled. This was a pleasant surprise, as it allowed me to quickly begin the conversion process. Vista comes with a thick manual, which I went over carefully, paying special attention to the section dealing with the controller.

The standard Vista system is configured for an Imsai computer. The onboard port addresses are normally set for the range $\mathrm{F} 8-\mathrm{FF}$. This range conflicts with the SOL keyboard, status and tape port assignments. Luckily, there is a DIP switch on the Vista board that allows the user to assign the onboard ports to a different range. I decided to use the range E8-EF.

After setting up the port addressing and setting the DIP switch to disable writing and disable the onboard bootstrap, I plugged the controller into my SOL. I loaded in some test programs supplied by Vista and suitably modified by me to reflect my port addressing. I tested the drive and interface, and everything appeared to go well.

The unit would home properly, seek properly, etc., though I did note that the head was al-
ways loaded. The problem was easy to fix. Someone had failed to remove one of the shorting bars on the drive itself which programs the type of headloading desired. I bent the appropriate shorting bar away from the socket and tried the tests again. This time everything worked fine.

A Persistent Problem

The next set of tests were designed to read and write bytes onto a sector of the disk. When I tried these routines out, weird things began to happen. Sometimes only a single byte would be read and then the system would hang up. Most of the time the system would simply hang up period, but not before filling the VDM screen with trash.

I remembered having read somewhere that certain $1 / 0$ boards would not work with SOL because the SOL uses a bidirectional data bus, and most other S-100 computers keep the input and output data buses separate. Sure enough, that was part of the problem. There was a single input line, D17, on the Vista board that did not have PDBIN included in its logic circuitry.

It was an easy matter to add a new IC to the board in one of the free IC spaces provided and, using an unused Tri-state buffer, create a new line to D17 that included the necessary PDBIN signal. (Complete details of all modifications to SOL and Vista are included in the Conversion Requirements section at the end of the article.)

Program A. Author's I/O routines for CBIOS.

[^2]

Fig. 1a. Original SOL circuit for adding WAIT states.

Fig. 1b. Changes to SOL to defeat off-board WAIT states.

New tests showed that the garbage was no longer generated, but the system would still hang up. Using a scope I found that the PWAIT line was holding the CPU in a WAIT state. Looking at the schematic (see Fig.1) I saw that a latching condition was being set up whereby logic on the Vista board caused a prolonged WAIT whenever certain IN instructlons were executed.

Looking over the circuitry, I could see, more or less, why it was happening, but I couldn't understand why it was set up to do that in the first place. I called Vista Computers, which informed me that, for a SOL,
point E47 should be connected to XRDY, not PRDY, since in a SOL system PRDY adds an extra WAIT state. I made the change but still had the problem. The more I thought about It, the more convinced I was that the basic problem lay in that PWAIT line circultry on the Vista board.

Finally, I took a piece of tape and covered up the PWAIT connector pad and plugged the board back in the SOL. I ran the program to read a sector off the disk, and lo and behold . . . success! I tested the ability of the system to write onto a disk, and again it was a success. I cut the run that connected PWAIT to
the rest of the Vista board and pulled the input to U57 high with a $2 k$ Ohm resistor to ensure that it would not accidentally trigger on nolse. I also tied the EXTCR line high when I experienced some problems with this line, which is not implemented on the SOL but left floating.

Longer tests showed occasional errors that took the form of "lost" data. This was finally tracked down to the SOL board. It seems that SOL adds a WAIT state to $1 / O$ and memory requests. Vista is meant to operate in a computer with no extra WAIT states!

After a few minutes going
over the SOL manual and schematics, I hit upon a possible soIution. I took the IC that controls the extra WAIT states and bent out the lead that supplies the final signal to the processor. Sure enough, this effectively cured the problem. (A week or so after making this change I received a copy of Solus News in which A. T. Atey discussed another method of accomplishing the same thing. My SOL uses all high-speed memory, but it seems that some SOLs use a slower ROM than others, and these units may require the WAIT state at least for the ROM. I am including Atey's suggested changes to the SOL

COMING TO BOSTON frl,SAT,\& SUN SEPT 28,29\&30

INTERESTED IN PERSONAL COMPUTERS?

This is the place for you! You'll meet and talk with hundreds of manufacturers, distributors and retailers .. all showcasing their new 1980 Micro, Mini and Small Computer Systems.

You'll see them all Radio Shack, Pet, RCA, Compucolor, Heathkit you name it! All the major terminal and peripheral companies too, plus software developers magazine editors and book publishers. Yes, it'll be the largest showing of personal computer hardware, software and services ever assembled in the Northeast!

You'll be enthralled, entertained and educated. You'll see computer art, graphics and animation. You'll hear computer synthesized music, watch computerized amusements, play electronic and video games and attend scores of free tech talks and briefings given by internationally recognized speakers. And you may win a free computer given away as a door prize!

Don't miss the largest gathering of computers and computerists! No pre-registration necessary. Tickets available at the door. Adult Admission $\$ 5.00$.

INTERESTED IN BUSINESS SYSTEMS?

See all the small and medium-sized systems at one time, under one roof!

You'll see them all the big (and small) names in computers, data and word processing equipment, peripherals and software. You'll attend dozens of free, easily-understood briefings on how computers can help you in your business or profession.

So if you're considering a computer or computerrelated service . . . starting your own computer business or changing your job within the computer industry ... or if you'd just like to learn more about computers as they relate to your personal life and to your business or profession, come to the show to see the Computerized World of Tomorrow . . Today. And bring the entire family. It's a fun-filled educational experience. No pre-registration necessary. Tickets available at the door. Adult admission $\$ 5.00$.

Fig. 2. Proper settings for DIP switch on Vista board when used with a SOL. The shaded squares represent the side of the switch that is down. The on-board port addressing range is selected for the range E8-EF; writing to disks is enabled; and the Vista on-board bootstrap circuitry is disabled.
at the end of this article for those who may need it.)
So far only one additional problem has cropped up. It seems that the original 74LS367 bus drivers used by Vista are too sensitive to noise on the bus or have inadequate drive, causing an occasional bit of garbage on the line. I substituted 8T97s and have had no further trouble along these lines.
The people at Vista tell me that they have switched over to 8 T97s, so that should be no problem to future purchasers of their system. The Vista peo-
ple appear quite interested in making their system compatible with the SOL, and they have been responsive to the various suggestions that I have made to them regarding conversions for the SOL.

SOL-Vista Software

Once I had all the hardware changes made, I got down to the task of getting the software modified. The software consists primarily of a bootstrap program that is used to read in one sector, a program called SBOOT, which then reads in the Vista Operating System. The

Vista dual disk drives mounted in enclosure.

VOS, as it is called, consists of CP/M followed by CBIOS. The CBIOS is the hardware-dependent part. It contains all I/O and disk routines and is where all customization is done.

Using the standard Vista software as a guide, I wrote up a simple bootstrap loader to reside starting at CA2A. (Vista provides source listings for the bootstrap, SBOOT and CBIOS.) The major changes to the bootstrap involved changing the port addressing and setting up the error so that after an error there is a return to SOLOS rath-
er than a HALT.
My reason for placing the bootstrap loader at CA2A is that in a SOL this is part of a 1 K RAM segment that is usually not used. Every SOL has RAM in this area, and so, in addition, any software written to use this RAM area can be used directly by any SOL owner without modification.
I also wrote up a revised version of SBOOT. Again, the major change involved changing the port addressing. One other important change was: After loading in VOS, instead of

STRIP:	MVI A, 15 H	3 DO A U (8 AUTO. CR)
	N1 1 7FH	SSTRIP OFF MSB
	CPI 75 H	BIS IT A DELETE?
	jnz Change	BMORE TESTS TO GOII
	STA DELFLAG	:SET DELETE 'FLAG.
	RET	; (DELETE KEY NEVER EChoed)
LFEED:	NVI B, 日D	bPRINT CRslf, ${ }^{\text {cr }}$
	CALL SOUT	
	MVI B, 日AM	BTHIS KEEPS THE VDM CQEAN
	CAL SOUT	3 BY ERASING
	MVI B, ${ }^{\text {ODH }}$	3 BEFORE WRITING.
	CALL SOUT	B(this Call may be left out).
	POP B	
	RET	
HE.P:	JZ LFEED	BCR AND LF ARE SPECIALI
	CPI 7FH	SNEVER PRINT A DELETE!
	NNZ CTRe	
	POP B	3 Return if a delete.
	RET	
CTRL:	CPI ${ }^{\text {204 }}$	IIS 1T A CTRL CHAR.?
	JNC Catinu	BIF NOT, DO USUAL
	LDA delflag	; DEL SEO.?
	CPI 7FH	
	JNZ CNTNU	3PERFORM CTRL FUNC. IF NO DEL. SEO.
	mov A,C	SGET ORIGINAL CTRL CHAR.
	ADI 40 H	BCONVERT TO PRINTABLE ASCII.
	mov C.A	; ROUTINE USES C
	CALL CONOT	BPRINT ASCII FORM
	MVI ADTFH	;SET DELFLAG AGAIN !
	STA DELFLAG	
	MVI CoSEH	BPRINT , FOR CTRe CHAR.
	Call conot	
	POP B	BTHIS IS FROM LONG AGO!
	RET	
Change:	8 CPI 18H	3 CTRE X MEANS CHANGE 1/O
	Revz	
	PUSH 8	; SAVE REGISTERS
	PUSH D	
	PUSH H	
INP I	CALL SINP	IS IT AN '1. OR 'O' CHANGE?
	JZ INPI	
	ANI 7FH	- STRIP MSB
	CPI ${ }^{1}{ }^{\text {P }}$	IINPUT?
	JZ INPCH	
	CPI ${ }^{\circ}{ }^{\circ}$	BOUTPUT?
	Jz OUtch	
	CPI ' X .	B ALLOWS CORRECTIONS.
	$J 2$ INPI	
	CPI ${ }^{\text {eDH }}$	3PORT LOADED AFtER CR.
	Jz WRAPUP	
	JMP INPI	IIGNORE TRASH.
INPCH:	CALL SINP	bet device code
	JZ INPCH	
	ANI 7FH	
	CPI ${ }^{\text {a }}$.	BX ALLOWS CORRECTIONS.
	JZ INPI	
	ANI 3	3ONLY 0-3 ARE VALID.
	MOV D,A	STORE DEVICE CODE
	LXI H, 0 C8e6 ${ }^{\text {H }}$	BHL HAS IPORT ADDR.
	MP INP!	PCR ENDS CHANGE.
OUTCH:	CALL SINP	BGET DEVICE CODE
	JZ OUTCH	
	ANI 7FH	
	CPI ' x '	ix Allows corrections
	J2 INP1	
	ANI 3	3 ONLY O-3 ARE VALID.
	MoV D,A	STORE DEVICE CODE
	LXI H.0C887\%	BML HAS OPORT ADDR.
	MVI A.e	BSET UP NULLS
3 The	CR,LF, CR SEOUENCE	IS already the same as 2 nulls
	STA OC8IOH	ILOAd SOLOS NULL COUNT 'flag'
	JMP INPI	PCR ENDS CHHWE
WRAPUP:	\% MOV M, D	ILOAD 1/O PORT WITH CODE.
	POP H	
	POP D	
	POP B	3 RESTORE.
	CALL SINP	BRESET INPUT PORT (IGNORE TRASH)

jumping into the system, I jumped back to SOLOS. This was necessary for this first version because I still had to make changes to the CBIOS.

My bootstrap program would only be of use once I got a new operating system placed onto disk, so, using cassette tape, I loaded in my version of SBOOT and then executed it. The disk drive engaged, and I could hear the telltale "click click" as the head stepped from to track-totrack. The SOLOS prompter character appeared on the screen, telling me that loading was done.

Using the DUMP facility of SOLOS, I checked the entries in the system jump table to make sure that what I had on disk and what I had in the way of documentation were the same. They were, so I proceeded to change the port addressing assignments. Once this was done, I patched in an elementary IN. PUT, OUTPUT and CONSOLE STATUS routine. Once this was done, I was ready to enter CP/M.

Using the documentation, I located the usual system entry point and told SOLOS to EXE-

CUTE 5A00. The sign-on message appeared, asking me how many disks I had. By this time my second disk had arrived and been duly installed, so I typed in "2." There was a slight pause, and then the CP/M prompter symbol appeared. This verified that the patched routines were OK.

I immediately reset my SOL and SAVEd a copy of the new CBIOS on cassette tape. In case anything happened, I didn't want to have to modify the CBIOS all over again using the SOLOS ENTER command! Again I EXECUTEd 5A00. I tried having each disk read to get its directory.

It was a good thing Vista had sent me that second set of disks, because I discovered that the entire first set was blank. Imagine the amount of frustration I would have had to endure if I had tried to get my system up using one of those blank disks! Thank God for small favors!

Using one of the blank disks, I copied the editor, assembler and the two source programs, SBOOT and CBIOS, onto the disk. Then, using the editor and
assembler, I modified these programs to reflect the changes necessary to make Vista run with my SOL. Once this was done, I used SYSGEN and DDT to integrate my changes into the rest of the system.

Once the new operating system had been placed onto the first two tracks of the disk, I could initiate the system by using the bootstrap program that I had written earlier. As soon as I was sure this new system was bug-free, I placed it onto all the system disks using SYSGEN.

After several days of experimenting, I found two programs that would not run with my SOL. It seems that DSCOPY and FORMAT had been specifically written for use with an Imsai computer. Using DDT, I examined each of these programs and made the necessary changes in port addressing. Once this was done, FORMAT worked just fine.

I am still having a problem with DSCOPY, which sometimes drops the first byte in a new file. The error is probably on my part . . . maybe I changed something I shouldn't have. If I could get my hands on a source
listing I could find what is wrong, but for now I copy my disks using some of the other techniques available.

As I began to use the disk more and more, I began to appreciate each of the programs that are a part of the system. For those of you who do not know CP/M, let me just give a quick rundown of each program and what it does.

ED: The editor is used for writing and modifying ASCII files. It allows the user to search and substitute strings, insert and delete text, etc. It is used for preparing source files prior to assembly and also for preparing programs written in BASIC.

ASM: The assembler is used to assemble source code into 8080 object code. It follows the syntax of the Intel assembler and is also compatible with Processor Tech's assembler. One major advantage of a diskbased assembler such as this one is that you can have labels (as many as you like) up to 16 characters long. It supports conditional assembly statements.
DDT: The dynamic debugger tool has many uses. It can be

used to disassemble object code into 8080 mnemonic code. It can be used to examine and alter memory (you do the altering in assembly language!) or give a combined hex and ASCII listing of data in memory. You can use it to fill portions of memory with any given character. Its most important use, however, is in tracing through a program. At each step it gives the contents of all registers and flags, each conveniently labeled, as well as the current instruction in mnemonic code. Should the user try to trace any program segment that is within or above CP/M's control section, this portion will be executed in real time. This allows disk commands to be done at the proper speed. Tracing resumes upon return from these upper program areas. In singledisk systems, DDT also furnishes a fast means of making copies of command files.

PIP: The peripheral interchange program allows the user to copy and transfer files within a disk, from disk-to-disk, disk-toperipheral, peripheral-to-disk and from peripheral-to-peripheral. In addition, it allows two or
more files to be appended. The buffer area used by PIP is small, and copying disks with PIP on a single-disk system involves a lot of disk changing.
DSCOPY: This disk copy program is supposed to transfer the contents of one disk onto another. It is only useful in a two-disk system.
SUBMIT: The submit program allows the user to perform a chain of operations under stored program control. Using the editor, the user writes a submit file that includes all the operations he wants performed. This file must have the file-type SUB. When the user types SUBMIT (filename).SUB, the named file will be used to build up a set of command lines that will be executed in sequence. This is useful for having the system perform lengthy routines such as making multiple program listings. Once the program is entered, the user can leave the system unattended and get busy doing something else.
LOAD: This program allows the user to load tapes in Intel hex format. (By the way, the assembler produces a hex listing
in this format. Such formats are loadable directly under DDT or may be made into a runnable command file using LOAD.) A file with filetype COM is produced which is directly executable.
DUMP: This program produces a hexadecimal dump of a disk file. The contents of the file are listed 16 bytes at a time, with the absolute byte file address listed to the left of each line in hex.
DSKCAS: Used for transferring disk files to Tarbell cassette. I have not used this since I don't have a Tarbell interface.
CASDSK: Used for transferring Tarbell cassettes to disk. I have not used this routine.
FORMAT: Blank disks must be formatted before they can be used. Vista uses a soft-sectored diskette that is IBM-formatcompatible. Formatting a disk erases all previous contents.
SYSGEN: This program allows the user to place operating systems onto disk. It does not affect any of the other contents of a disk.
CPM: This program allows the user to re-configure his operating system for different mem-
ory sizes. It builds a new operating system, to which the user must append versions of SBOOT and CBIOS reassembled for the desired memory size.
STAT: This program checks the disk and tells you how much memory space is still available.

CBIOS and SBOOT: These are source listings of the programs the user may have to or want to modify using the editor and the assembler. Modification is relatively direct for anyone who can work in assembly language.
BASIC: This program reads a file written in BASIC and produces a numbered listing, flags errors and builds up a file that is runnable. The BASIC supplied is BASIC-E. An excellent manual for this particular BASIC is available from JEM Company, Suite 301, 2555 Leavenworth St., San Francisco CA 94133. When I purchased mine, the cost was $\$ 25$ for the manual and $\$ 1.50$ postage. (C-BASIC is also available from Vista on their diskette. Write them for the current price.)
RUN: This program will read and load the program compiled by BASIC. Run-time errors are

\square

 SCJLBI Publications
Z80

 Instruction HandbookA complete guide to the $\mathbf{Z 8 0}$ instruction set. Machine codes presented in both octal and hexadecimal format. An index lists instructions alphabetically along with machine codes and timing information. Industrystandard mnemonics used throughout. \$4.95* No. 20

Personal

 Information Management SystemPlain talk on what a computer can do for you. How to use a computer without knowledge of programming. 15 examples include personal mailing list, accounts payable - even an intelligent ham radio log. For the TRS-80, PET and others. \$9.95* No. 10

Microcomputer

 PotpourriReference for beginner, technician, engineer Glossary with all the jargon. Helps beginners understand computer magazines, mfg. literature and serves as reference for the pro. Reviews microprocessor chips in detail. Complete text on understanding microcomputers. \$2.95* No. 70

HOT TO TROT... FOR COMPUTERS

Understanding Microcomputers 300-page no-nonsense easy-reading text. Simple-to-use glossary. Extra knowledge for reading and understanding computer magazines and manufacturer's literature. Instructions for microcomputers. Machine language programming. Input/output devices. Gives an intro to BASIC. \$9.95* No. 90

SCELBI Publications, P. O. Box 3133, Milford, CT 06460 203-874-1573

*IMPORTANT ORDERING INFO! Include $\$ 1.00$ shipping/handling for each item. Prices shown are for North American customers. Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks.

$$
\text { ㅁ No. } 10
$$

ㅁ No. 20

- No. 30
- No. 70
- No. 90

Name (please print)
Card No. \qquad Bank No. \qquad Exp. \qquad Address \qquad
City/State \qquad Zip \qquad
Signature \qquad Amt. Enc. \qquad

See SCELBI books at your favorite

- $\$ 1$
computer or electronics store.
flagged using two-character error codes (alphabetical).

In addition to the above, there are certain commands that are resident whenever the system is waiting for a command line. These commands include:
DIR: The directory is listed.
ERA: The specified file is erased. (Actually, I believe only the directory information is erased and the file space freed. The actual file seems to remain but is written over later on if the space is needed.)
TYPE: Any file containing ASCII information can be listed using the TYPE command.

On a single-disk system, the user can do most things that can be accomplished in a dualdisk system, but they take longer. Instead of actually changing disk drives, the system will prompt the user by telling him which disk (A or B) to insert in the drive.

Software Modifications

I often use our Vista disk and have recently written up a new, more sophisticated CBIOS (see

Program A) that I have made available to Vista for use by SOL owners. This new CBIOS corrects some output problems that appeared when using the VDM for output: Certain command lines would be erased when the "return" key was hit; they were entered and executed, but the user could not see them any more on the screen.

I corrected this problem by arranging the output program to ignore carriage-returns and to expand line-feeds into the sequence CR,LF,CR. This keeps the VDM display clean by erasing trash on the current line (which may be there after a delete sequence) and ensures that the next line is also erased. The extra CR is easily removed for those who prefer to do without it. The expanded sequence also eliminates the need for nulls when using a TTY.

I did not particularly like the way CP/M handled deletions by echoing them. When long deletions were done, the mass of characters, which are echoed in reverse, was too much of a distraction. For example, to correct the line, "SPELING ERROR" would result in the fol-
lowing line: "SPELING ERRORRORRE GNILING ERROR."

What I did was arrange the input and output routines so that whenever a DELETE key was hit, a software flag was set. When the output routine is called and it is determined that a delete sequence is under way, it handles it by inserting appropriate back spaces both before and after the character is echoed, so that on the VDM screen the cursor is seen to back up. It should be noted that on a TTY the delete sequence appears in the normal way, since there is no back space executed.

Another important addition to the CBIOS that I made is the ability to change I/O devices at any time without returning to SOLOS. My INPUT routine, called CONIN, detects when the user has entered a control X character and jumps to a routine that then allows the user to specify which of four input or four output devices is desired. When the "return" key is hit, the user-supplied information is converted to information stored in the SOLOS RAM status area.

SOLOS then uses this infor-
mation to determine the current I/O ports on all subsequent input and output operations. The change-of-1/O sequence is done without any echoing. This is so no unwanted characters will appear on the current listing device. The ability to change I/O at any time is especially useful when the user only wants a partial listing printed out.

I do all my editing, for instance, with the VDM screen, but when I want hard copy of a given section, I switch over to our TTY. The devices supported are those supported by SOLOS, and they include the keyboard and VDM, serial input and output (such as a TTY), parallel input and output and a user-defined input and output custom routine.

I have also made available to Vista a revised version of SBOOT and a set of utility programs together with a version of FORMAT that will run with a SOL. All of these are available on a single disk with a runnable disk operating system that includes all the refinements mentioned earlier. A source listing of SBOOT and CBIOS is also in-

cluded so the user can add refinements of his own.
There is a special program on this disk that is called BYE (see Program B). This program was written by Bro. Al Roman (also from Don Bosco Tech and the other instructor in our computer course) and myself. This program contains a number of utilities that are loaded into the SOLOS system RAM area that resides between SOLOS and the VDM memory. I used this area because every SOL has it, and, in most cases, it isn't used.
When this program is loaded, it relocates itself and initializes a set of custom commands. These custom commands are DI, which will load in the disk system, FC, which will allow the user to find where a pair of characters is located in memory, FN, which does the same thing but uses a hexadecimal digit as the search character, CL, which clears memory, and SC, which displays "pages" of memory on the VDM. These utilities allow fast searches of memory. The current address is displayed on the top line, and the rest of the screen is filled with a visual memory image.

In the case of FC and FN, the character that is found is displayed at the left of the screen -at about the middle-and is made to blink under software control. This aids in quickly spotting the character. Since the found character is shown at the approximate middle of the displayed memory area, the user can see the character "in context" and more easily determine if that is the character or pair that he is interested in. Hitting any key will cause the program to search for the next occurrence.

Bro. Al and I have made extensive use of these utilities for finding where specific things of interest are located in memory. It should be noted that if the custom commands are destroyed (as they are whenever a system reset occurs!) they may be reinstated by typing in "EX C915" while under SOLOS command. This will cause the custom commands to be rewritten into the proper place. If power is removed, everything is lost, unless your memory has battery backup.

Another thing that is loaded in by BYE, but which has no cor-
responding custom command name, is a short routine that will move a program from the CP/M Transient Program Area down to 0000 and begin execution there. We use this to move programs such as BASIC5, TARGET, TREK-80 and the ELECTRIC PENCIL.

We have also put such things as Extended BASIC and the ALS-8 assembler onto disk. We load these a bit differently due to either their size or where they have to be loaded in memory. This disk system loads all executable files starting at 0100, so if a program runs elsewhere, it must first be relocated.

Before I go into the details of the conversion necessary to make a SOL and Vista compatible, I'll mention that the Vista drive is a Shugart SA 400 Minifloppy drive, the same drive used by many other companies offering disk systems for the computer hobbyist. The Vista interface board is licensed from Tarbell and is indentical, as far as I can tell, to the standard Tarbell disk interface.

This board uses the Western Digital 1711 controller chip, and, should the user ever desire
to upgrade to a full-size floppy, the interface board will probably be fairly easy to convert for this purpose, since the options are all jumper-selected. Diskettes are soft-sectored, such as DYSAN \#800130 or VERBATIM MD 525-01 (\#4443 if ordered by the box). The price per disk runs between $\$ 4$ and $\$ 5$ depending on the vendor and the quantity purchased. A disk must be formatted before it can be used.

Conversion Requirements

Throughout the text I have mentioned in general terms what steps I had to go through in order to get my SOL and Vista running together. The following is a more detailed account of everything that needs to be done. Some things are mentioned that may need to be done with some SOL units, but not with others.

I found only one change necessary to the SOL itself. Remove U71 and bend pin 11 away from the body, so that when it is reinserted in its socket, pin 11 makes no connection. This defeats all memory and I/O WAIT states. (If you have slow ROM then you may need a further conversion that will be detailed later.)

The following changes refer to the Vista/Tarbell board. Check U24 and U30. If they are 74 LS367s, change them to 8T97s. (Newer boards may be shipped with 8T97s as standard parts.)

Add a pull-up resistor to the EXTCR line (S-100 bus, pin 54). Any $1 / 4$ or $1 / 2$ Watt resistor in the 1 k to 3 k range will work. I found a convenient place to be the bottom of the board, placing the resistor between the feed-through from S-100 pin 54 and +5 volts from pin 16 of U30.

If there is a jumper going to E47, remove it. (E47 is just below the DIP switch.) Jumper E48 to E46. (E46 is $\mathrm{S}-100$ bus pin 3, and E48 is about half an inch above E46.) These changes connect the onboard WAIT circuitry to the XRDY line.

Find the run that goes from the S-100 bus pin 27 (PWAIT) to U57, pin 14. Cut this run. Now add a 1 k to 3 k pull-up resistor
between pins 14 and 16 of U57. This stops unnecessary WAITs.

The next change to the Vista board is to add the necessary PDBIN logic to the D17 line (S-100 bus pin 43). On the particular board I purchased there were four empty IC stations. I used the empty U46 location for my additional IC. Solder a 7432 or 74LS32 into the U46 position. Solder a short jumper from pin 7 of U46 to the ground bus located just below. Solder a jumper from pin 16 of U46 to the +5 volt bus located just above this pin.

On the bottom of the board, cut the run that comes from pin 11 of U30. Cut it about halfway along its length. On the run just cut, there is a feed-through. Solder a jumper between this feed-through and pin 3 of U30. This procedure removed the original bus driver from providing the D17 signal and placed a new bus driver onto this line. (Pin 3 of U30 now connects to S-100 bus pin 43.)

Now we have to connect the proper input signal to our new driver. Connect a jumper between 2 and 12 of U30 (or you can connect between pin 2 of U30 and pin 1 of U45, which happens to have a feed-through right next to it, which makes soldering a bit easier).

The control line of our new driver needs a control signal that includes the original signal and a suitable PDBIN signal.

Pin 3 of U3 has just such a sig. nal, so connect a jumper between pin 3 of U3 and pin 1 of our U46. (This jumper is best placed on the top of the board.) The other signal that we need is labeled 10^{*} on the Vista schematic and is found at pin 4 of U29. Connect a jumper between pin 4 of U29 and pin 2 of our U46. This completes the changes made to the Vista board.

Try out your system. If you still have difficulty, it may be because your particular SOL has a slow ROM and needs the on-board WAIT states. Fig. 1 shows a way to defeat off-board WAIT states while still retaining on-board WAIT states. These changes to the SOL are made in such a way that no new ICs are added, and no lands are cut. This information appeared in Special Issue No. 1 of Solus News, PO Box 23471, San Jose CA 95153, in a hardware review by A. T. Atey (which I assume is a pen name). I have tried the modifications out in my SOL, and they work. Many SOLs will not require the modifications shown in Fig. 1.

Conclusion

In closing, I would like to say that although it took me some time and a little frustration before I finally got my Vista and SOL working well together, future users should not have much trouble if they follow the
steps listed in this article. And whatever else you do, if you do order a Vista for your SOL, tell the Vista people that it is for a SOL, so they can provide you with the appropriate software and documentation. There is no need for you to have to duplicate work that has already
been done.
I have found the Vista system with CP/M to be a most useful tool, and I am sure that there are many others who could benefit from owning such a system. It may require a little work to get running, but once it is running, it saves a lot of work!

Fr. Thomas McGahee teaches electronics and computer courses at Don Bosco Technical High School in Paterson NJ. He has been involved in teaching computer-related courses since 1972 when he taught computer programming at Don Bosco Tech in Boston. In 1974 he got involved in the computer hobby field. Since then he has built computers based on the $8008,8080, Z-80$ and 6800 microcomputer chips. His interests are related to both hardware and software, and he has written articles that have been published in several of the magazines that serve the computer hobby field.

WHEN THE FUN AND GAMES ARE OVER, you shouldn't
have to gamble on your microcomputer's ability to get down to business. You won't with Outpost 11. It's a serious unit with quality components: Cherry, full ASCII keyboard; Setchell-Carlson CRT, 24×80 characters, 7×9 dot matrix; inverse, grey, blink; form generation characters; Shugart floppy disk drives; M6800 CPU; 32 k bytes RAM; glass-epoxy PC boards, manufactured and tested to MiI Q 9858-A; entire unit 100-hour burn in tested; IC's tested to Mil P 883; I/O interrupt prioritizing structure; softsectored disk format; business BASIC; FLEX 2.0; TSC BASIC; self diagnostics; software development packages; etc; etc; etc. All this and more at only $\mathbf{\$ 2 , 5 9 5}$, suggested retail price. See Outpost 11 at a dealer listed or write us for the name of a dealer near you. TANO Corporation, 4301 Poche Court West, New Orleans, La. 70129 -тз

THE SERIOUS MICROCOMPUTER

Dealers: ATLANTA, GA, Magaro and Associates - 404-252-6609, Professional Indexing - 404-572-4177•BEAVERTON, OR, DataTools International - 503-645-4604•BEND. OR, Control Industries - 503-389-1969 - COOKEVILLE, TN, Cumberland Computers - 615-526-7651 DADE CITY, FL, Sabatelli Computer System Inc. - 904-567-7777•DALLAS, TX, Eclectic Corp. - 214-358-1307 - DES MOINES, IA, H. Allen Hanna - 515-283-5130 - ELK GROVE VILLAGE, IL, Kramer DataPower Inc. - 312-894-0554 - GREENVILLE, SC, Plus Inc. - 803-242-9090 - HOUSTON, TX, Eclectic Corp. - 713-228-7798 • IDAHO FALLS, ID, Great Plains Computer Co. - 208-529-3210 - LONG BEACH, CA, CTI Data Systems Inc. - 213-426-7375 • MOBILE, AL, Railway Express - 205-661-8889 - NEW ORLEANS, LA, TANO Corp. - 504-254-3500 - NEWTON CENTRE, MA, Daner-Hayes Inc. -617-969-4650 - PARKER, CO, Western Marketing Assoc. - 303-841-2788 - SALT LAKE CITY, UT, Home Computer Store - 801-484-6502. SAN JOSE, CA, PBC Associates - 408-377-7001. SEAFORD, DE, Robert Underwood - 302-629-8438. SEATTLE, WA, Empire Electronics - 206 SEAFORD. DE, Robert Mnderwood - 302-629-8438 - SEATTLE, WA, Empire Electronics - 206 -
$244-5200$ - WALTHAM, MA, Computer Mart Inc. $-617-899-4540$ - WESTFORD, MA, Thorstensen 244-5200 - WALTHAM, MA, Computer Mart Inc. - 617-899-4540 - WESTFORD, MA, Thorstensen
Labs $-617-692-2051$ - ONTARIO, CANADA, Combined Systems - $416-549-2900$ - GOUDHURST, KENT, ENGLAND, Warren Woodfield Assoc. Ltd. - 05-803-590 • DEALER INQUIRIES INVITED -504-254-3500. TWX 810-591-5229

The Failure of a Micro in Business

Microcomputers are miraculous, but not magic. Public education about micros is needed.

Terry Kepner
c/o MCT
3220 S. Dodge \#3
PO Box 17177
Tucson AZ 85713

Iam a partner/programmer in MCT Microcomputer Consultants. We have been writing programs and advising people on microcomputers since June 1978. We have chosen to specialize in the Radio Shack TRS-80 because of the local lack of any other programmers, capable or willing to work on it, although we have worked on several other computer systems when necessary.

This article is a description of a recent project in which we were involved.

Background

In November 1978, a customer called us to discuss the possibility of using a Radio Shack microcomputer in his business. He was the owner and operator of a foreign-car salvage yard, and he wanted to use the TRS-80 to keep track of the cars and parts that made up his inventory.

At first this seemed to be a relatively simple request, until he explained that he also wanted the microcomputer to be able to cross-index the parts so that it could search the inventory for a part to replace another part not necessarily from the same model and year of car.

For example, he wanted to be able to ask the computer if he had a door that would replace the door of a 1974 Datsun $240 Z$. The computer would check the inventory of Datsuns to see if any of them had a door that would fit the 240 Z , even if it came from a 1978 Datsun 200SX.

This meant that not only did we have to keep track of the cars and the parts available on the cars, but also all the other models that each of those parts would fit.

After studying his needs, the Radio Shack system and the other systems available, we suggested that he purchase a North Star microcomputer with 32 K RAM and two double-density mini-disk drives. This system would be able to keep his entire inventory on only three or four disks, with the majority of the most-requested cars on-line in the two drives.

The Radio Shack system he had looked at included 32K RAM and two single-density mini-disk drives. He would need five to eight mini-disks to cover his inventory and the matches, with only one-third available on-line at any one time.

The North Star system was given a delivery time of two to three months, while the Radio Shack store promised delivery within one month. Since he wanted the system as soon as possible, he purchased the Radio Shack system. The Radio

Shack system included: one CPU with 16K RAM, Level II BASIC; one expansion interface with 16K RAM; two mini-disk drives, 89,600 byte storage each; one video monitor. Each of these items required a separate socket, for a total of three 2-outlet wall sockets.

Because of the uniqueness of his inventory requirements, there was nothing commercially available capable of doing what he desired, so we wrote his program ourselves and charged $\$ 240$.

When we had the program running to our satisfaction in our office, we stopped and packed up the equipment to take it to his office for final revisions and touch-up work.

Problems

During our programming, the only problems we encountered were DATA READ ERRORs from the mini-disk drives. Although these were annoying, they were not fatal, and when we checked with Radio Shack we were informed that a hardware solution was available at their repair facility . . . no charge.

The next morning when we had the system set up at the salvage-yard owner's office, we reviewed the flowchart of the program with him and showed him how we had the program set to work. Following his criticisms, we started making the alterations and additions he had requested.

It was at this point that we noticed we were having line voltage problems: the video monitor was flickering every few minutes and fading at times. At that moment we didn't really think about it, as the video monitor had also been flickering at our office, though not nearly as frequently.

At 11 AM we had a power brownout. The monitor went off, then on, and the computer did an auto-reset. We turned everything off, then back on again, and reloaded the program from the disks. We asked the owner if he had any unusually heavyduty power tools that might cause such a brownout. He said no.

Less than an hour later another brownout lost us half of our RAM memory, and we were again forced to do a dead-start. This time the owner shut down his yard, leaving on only the computer and room lights. The video monitor still flickered.

At one o'clock the program crashed. Upon inspection, we discovered that portions of the memory had been altered. For example, a DATA instruction had been changed to MERGE. Letters were changed in PRINT statements, and some commas were changed to dollar signs. We again reloaded the program. There were no errors and it ran properly. However, after 20 minutes it also crashed. Again there were errors.

Four times we tried to run the
program. Each time things worsened.
Finally, entire portions of the program were being deleted, including one loss of over 10K of instructions. Also, our DATA READ ERRORs increased to the point where we were unable to load the program from the disks without trying four or five times.
For a while, we thought we were in The Twilight Zone.
We finally decided to shut down completely and return the system to our office, where most of the problems disap-peared-but not all. We still encountered DATA READ ERRORs every other time we tried to access the mini-disk drives, and there were still random alterations to characters in the program.

Troubleshooting

We called T.G. \& E., the local electric power company, and asked them to check out the salvage yard's power lines for unfiltered spikes and surges. We also had them check out the local microwave transmission and reception routes to see if the salvage yard might be within one of these paths and accidently receiving some interference.
Late the next day, the T.G. \& E. representative called and told us that the salvage-yard power lines were within normal specifications and that there was no detectable amount of microwave radiation above normal background levels. He also told us the interference probably came from a major arc-welding outfit only five telephone-pole spans away.
He informed us that heavy industrial welding could send voltage spikes as high as 10,000 to 100,000 volts through the lines, and that they could pull an entire power sub-grid down to 90 volts for short periods of time.

After consulting with the computer specialists at T.G. \& E., we concluded that the salvage yard would need powerline filters in order to protect the microcomputer from those spikes, surges and low voltages. Because the Radio Shack system he had was composed of five subassemblies, each with
its own power cord, this meant four outlets had to be supplied (the video monitor didn't really have to have filtered power).

After checking around, we found that the cheapest adequate filtration power supply cost $\$ 75$ and was equipped with only one outlet, rated at 65 Watts. The next choice was a \$100 single-outlet Unitrol filtered power supply rated at 400 Watts.

Both of these power supplies were designed to maintain a constant 120 V ac output, even if the input dropped to 90 V ac. Both devices were made for color photography enlargers, and should be available at most photography stores.

An Ultimatum

When we informed the salvage-yard owner that he would have to have these additional devices, he became very upset. He thought that the Radio Shack computer was at fault for not being properly protected in the first place.

Because we were still having problems with the changing characters in the program, we decided to give it a RAM test. We discovered that several highaddress RAMs were now faulty, and that the expansion interface would have to be sent to the regional repair center. The Radio Shack store we were dealing with said it would take about seven days.

The salvage-yard owner gave Radio Shack an ultimatum: either replace the expansion interface within 24 hours or cancel the entire deal. Since there was a two-month back-order wait for a new interface, this was not possible. The Radio Shack store refunded his money and took back the equipment.

As far as our program was concerned, he felt that we had honored our part of the contract with him in supplying him with a working program that did what he wanted, so he paid us the agreed amount in full.

In Retrospect

Looking back over this experience, we can see several factors that contributed to the failure of this project.

First: the unrealistically high expectations of the customer. He expected 100 percent perfection of both hardware and software. The Radio Shack computer had been originally designed with the hobbyist in mind, not as serious competition to business computers. Because of this difference in market aim, ultra-high reliability was not considered worth the additional money it would have required.
The computer was designed for the home environment, not heavy-duty business applications in an industrial park. Also, because of its new position on the market, the Radio Shack computer is still encountering flaws in both hardware and software, which are being corrected as fast as possible.
Regarding software, the owner couldn't understand why it would take more than a week to just write the program, much less debug it. Even after talking with us, he couldn't understand why Radio Shack couldn't guarantee 100 percent reliability on the first sale, nor could he understand why we couldn't guarantee 100 percent perfection the first time we ran the program.

Second: the lack of personnel at the Radio Shack store with adequate knowledge of both their computer and programming. Questions that they should have been able to answer, they could not.

Third: our own lack of information about the stability of the power lines and the possible effects they could have on the microcomputers.

For the Professional

We suggest that before you agree to sell a computer or write a program for a computer that the customer will buy, you do the following:

1. Educate the customer on the problems that all microcomputers have, both hardware and software.
2. Check the environment in which the computer will be placed. Are dust, temperature, atmosphere or power lines likely to be problems? If there is the slightest possibility of a yes on any of these, notify the cus-
tomer, preferably in writing. The most important thing to remember is that the customer is depending upon you to tell him about any problems you foresee. After all, you are the expert, aren't you?

For the Businessman

Before you purchase the equipment, make sure you understand its limitations. Nothing works perfectly; to expect anything else is to court disaster. Don't expect the program to work right the first time, or the second. It might take one month or two months or more before the program runs completely the way it should.
Next, check the environment in which you expect the computer to be placed. Is it too dusty? If you see the dust, then yes. Is it too hot or cold? If you can be comfortable wearing a shortsleeve shirt, then the computer is probably OK. If you are hot, the computer probably is also. If you're cold, so is the computer. Both conditions must be under control.
Finally, are the power lines OK? If you have the slightest doubts, call in an expert from the local power company. If you need filtered power, get it. After all, why waste a $\$ 3000$ investment because you didn't get a $\$ 300$ filtered power supply?

If you have any questions, ask someone-it certainly will not hurt. With care, the computer system will probably outlast us all.

A Lesson to Learn

I think we will see more failures of this type in the future. The general public has too little knowledge of the frailties of microcomputers to appreciate the care with which they must be handled. Also, most small businessmen do not understand that micros are still in a semiexperimental stage. After all, two years ago most microcomputer companies were still farfetched dreams.

Until the public is educated about what micros really are, we will see more and more micros fail because some businessmen have unrealistically high expectations and demands.

Thoughts on the SWTP Computer System

Installment number five tells you how to put BASIC in ROM. Sound intriguing?

This is the fifth article in our series on the SWTP computer system and all the hardware and software accessorles available for it. Judging by some of the reader mail, this month's topic is of great Interest to many readers-how to put BASIC in ROM. Did I see your ears perk up?
Since the whole question of reworking someone else's software comes up pretty often, I'll describe the entire process from beginning to end. Maybe you'll get some ideas for your own next project.

Moving (Relocating) BASIC

Since it takes a little work to relocate BASIC, my first questlon was: "Which BASIC?" There are a lot of them avallable for the SWTP system. Here's just a partial list:

SWTP has made a whole batch of them over the years, all written by Robert Uiterwyk. There are several still current: 8K BASIC versions 2.0, 2.2 and 2.3 and disk BASIC version 3.0.

Technical Systems Consul-
tants (Box 2574, W. Lafayette IN 47906) has a Micro BASIC Plus that runs in a 4 K system and is the only one that comes with a complete source listing, which will make the job easier. They have just come out with a super-fast BASIC interpreter; it appears to be the fastest BASIC on any micro.

Computerware Software Services (830 First Street, EncInitas CA 92024) has four BASICs: a cassette file-handling BASIC, a disk file BASIC for sequential files for either the SWTP disk or the Smoke Signal Broadcasting disk, a random access dlsk flle BASIC for the SSB disk and even a cassette BASIC already in either 2708 or 2716 EPROMs.

Percom Data Company (211 N. Kirby, Garland TX 75042) produces its own disk BASIC, which is also quite fast.

Hemenway Assoclates (151 Tremont Street, Boston MA 02111) produces a compiler for a BASIC-like language called STRUBAL.

GRT Corporation (1286 N.

Lawrence Station Road, Sunnyvale CA 94086) sells a BASIC Interpreter written by Microsoft, one of the pioneers in microcomputer BASICs.
Mlcroware Systems Corp. (PO Box 954, Des Moines IA 50304) provides an A/BASIC compiler. (Computerware sells some patches to make it easler to use with SWTBUG or other monitors and to allow its use with the SSB disk.)

Another BASIC compiler, written by Software Dynamics (\$325) Is available from Smoke Signal Broadcasting (31336 Via Colinas, Westlake Village CA 91361).

Tom Pittman's Tiny BASIC (available from Itty Bitty Computers, PO Box 23189, San Jose CA 95153) is probably the least expensive and runs in just 3 K .
l've probably missed a few BASICs, but that should put to rest the arguments of all the S -100 fans that there's no software available for anybody but them! Anyway, the first problem was to decide whose BASIC to EPROM. I chose SWTP 8 K BASIC version 2.0 because it Is inexpensive, most SWTP owners probably already have it, and it's versatile. Also, unlike some of the later SWTP BASICs, it's relatively bug-free.

The next step was to check whether it was PROMable. Does the code modify itself? Is the data mixed in with instructions in such a way that it would be difficult to move the whole thing into a ROM?
To be PROMable, a program must not change Itself in
any way while it runs, since ROM cannot be written Into. Since this is hard to check without a listing, I used a trick which, while not foolproof, worked. I wrote a short program to go through all the BASIC code and simply add up all the bytes in the program. (l call it a checksum program, shown as Program 1. My checksum program is part of a monitor I have In a 2716 EPROM and turns out to be useful for making sure that programs are loaded correctly. In the program, locations A002 and A004 hold the first and last addresses to be checksummed; CHEKSM is a pair of locations for storing the sum, and SELECT is where the completed program returns.)

If a program doesn't change as it runs, the sum of all of its instructions will also not change. I ran the checksum program several times, before and after running various BASIC programs. Each time I received the same checksum, sol was pretty sure that BASIC stayed unchanged.

Since SWTP does not provide source listings for its software, the best I could do was to disassemble the machine-language code. This gives a listing with the assembly-language mnemonics but lacks all the meaningful labels and comments the original would have had.

There are several disassemblers available, ranging in price from no cost to about $\$ 30$. A good one was written by Phil Hughes in the July 1977 issue of Kilobaud ("Introducing the Disassembler, p. 60); another
appeared in Dr. Dobb's Journal in March 1977. SWTP has one available at low cost, and others are available from Computerware and Smoke Signal Broadcasting (they call it a Source Generator). I'll refer you to Phil Hughes' article for details on disassemblers.

I used the SWTP disassembler; three hours and about 70 pages later, I had a disassembled listing. I knew that BASIC took up memory locations 0100 through 1DB0. I also suspected that it used locations 00FF and below for data, since these can be reached with direct addressing instructions. I expected that the BASIC source program would take up locations 1DB1 and above.
The next step took about two hours-a careful study of the listing to identify those codes that were constants and those that were addresses. This is crucial, because when a program is moved to another area of memory, all its addresses will have to be changed, but constants have to stay the same. (It pays to be careful at the beginning, but this is one part of the job that involves a large part of intuition and guesswork.)
This revealed that, though most of the bytes in 0100 to 1DB0 were instructions, there were some areas that did not disassemble into any instructions that made sense. The SWTP disassembler prints out the ASCII equivalent for each byte that has one, and so a pattern started emerging. I recognized words such as TAB and SAVE. I eventually made a list of the data and the instructions.
0020-00FF. This area had flags, memory pointers, temporary storage locations and other changeable data. Since BASIC refers to this data mostly with direct addressing, it can't be moved. Hence, any relocated BASIC will still have to leave this data where it is.
0100-014D. Contains a whole batch of jump instructions that vector the cold-start and warmstart addresses and I/O operations for all ports. This can be moved, and all addresses have

to be updated.

014E-0156. This data can be moved. But buried in this group are two addresses: 014E/F point to the beginning of the BASIC language text (which may or may not change, depending on where we put the source test) and 0150 holds 01 , the number of the control port; this can be put into EPROM if you don't expect to change control ports, but must be moved into RAM if you do. I decided to leave it as 01, move it into EPROM and give up the capability of changing ports.

Locations 0151/2 point to the end of a lookup table, which will be relocated; hence this pointer will change.

Locations 0153 through 0156 hold the codes for the line delete, back space and other control characters. These should stay the same.

0157-015F. These are three jump instructions that don't seem to ever be used. I decided to play it safe and change their addresses when relocating.

0160-0314. This is a big data table, in which BASIC looks up the address of the routine that performs functions or commands. Each entry in the table consists of the ASCII code for the function or command word, followed by 00 , followed by a two-byte address. When relocating this table, you can put everything into EPROM, but the addresses have to be updated.

0315-0346. Contains more data, that is, message strings such as READY and ERROR IN LINE. This, too, can be put in EPROM.

0347-0477. Program instructions.

0478-0484. The carriage-return string \$0D, \$OA, etc., followed by some rubouts.

0485-1C9C. Program instructions.

1C9D-1DB0. Constant data that seems to be used by some of the arithmetic routines.

This marks the end of the unchangeable part of BASIC.
Starting at 1DB1, BASIC stores its changeable data. 1DB1-1E2E appears to be a stack for processing arithmetic statements; 1E2F-1EAE is another data table; and the actual

BASIC source text is stored from 1EAF up. None of this can be moved to EPROM.

Having looked through BA. SIC to find data and addresses, I next had to actually move the BASIC interpreter to some other area of memory and see whether it still worked. This is a good check to make sure all the addresses to be changed have been located.
Since my system contains 8 K of memory from A000 to BFFF, 1 decided to move BASIC up there. The low part of that is used by my SWTBUG monitor, so I moved BASIC to start at A100. In other words, original location 0100 was moved to A100, 0101 went to A101, and so on.
I could have written a simple MOVE program to move all of BASIC up there without change and then used the monitor's memory change function to go through the moved program to change all addresses. But an easier way is to let the computer change addresses as well. The program to do just that is called a Relocator, which is available from Technical Systems Consultants (\$8 with source listing, $\$ 23$ with listing and cassette).
Listing 1 shows the dialogue between me and the Relocator. Initially, the Relocator asks where the original program is and where you'd like to move it. In my case, I wanted to move the area from 0100 through 1DB0 up to A100. As to the next two Relocator questions, I did want to fix address references but did not want to load from tape.
The next part asks for the addresses of data blocks. From the disassembled listing, I had identified four big biocks that were not instructions, so these became data blocks to the Relocator.

But some of these data blocks contained addresses; in the original assembly-language code, these addresses were probably done by FDB instructions, so the Relocator next asks whether there are any FDBs inside the data blocks which need changing to new addresses. Listing 1 shows

* TSC 6800 RELOCATOR * PRESENT PROGRAK:
BEGIN ADDRESS? 0100
END ADIRESS? 1 DBO MOVE TO? A100 FIX REFERENCES? Y LOAD FROM TAPE? N IIATA BLOCKS? Y

BEGIN ADDRESS? 014E END ADDRESS? 0156

BEGIN ADDRESS? 0160 END ADDRESS? 0346

EEGIN ADJRESS? 0478 END ADDRESS? 0484

BEGIN ADDRESS? 1C9D END AUDRESS? 1DBO

EEGIN ADDRESS? FFFF
ALTER RANGE? N
FIX FDE'S? Y
ADDRESS? 0151
ADDRESS? 0164
ADDRESS? 016 B
ADDRESS? 0172
ADDRESS? 017A
ADDRESS? 0181
ADDRESS? 0188
ADURESS? 018 F
ADLKESS? 0196
ADDRESS? 019 D
ADDRESS? OIA4
ADJRESS? $01 A B$
ADDRESS? 01B3
ADDRESS? 01BB
ADDRESS? 01 Cl
ADDRESS? 01C8
ADURESS? OICF
ADDRESS? $01 D 6$
ADDRESS? $01 D \mathrm{D}$
ADDRESS? $01 E 6$
ADDRESS? DIFO
ADDRESS? 01F8
ADDRESS? 0200
ADURESS? 0205
ADDRESS? 02011
ADURESS? 0217
AUDRESS? 021D
ADDRESS? 0225
ADDRESS? 022D
ADDRESS? 0234
ADDRESS? 0239
ADDRESS? 0239
ADDRESS? 0240
ADDRESS? 0248
ADDRESS? 0256
ADDRESS? 0258
ADDRESS? 0262
ADDRESS? 0269
ADDRESS? 0273
ADDRESS? 0279
ADDRESS? 0281
ADDRESS? 028A
ADDRESS? 0290
ADDRESS? 0296
ADDRESS? O29C
ADDRESS? 02A3
ADDRESS? 02A9
ADDEES? 02 BZ
ADDRESS? 02 B 3
ADDRESS? O2BE
ADDRESS? 02 Cb
ADDRESS? 02DO
ADDRESS? $02 \mathrm{D7}$
ADDRESS? 02DB
ADDRESS? 02E1
ADURESS? 02E8
ADDRESS? O2EF
ADDRESS? 02F6
ADDRESS? 02FF
ADDRESS? 0307
ADDRESS? 030C
ADDRESS? 0313
ADDRESS? FFFF

RELOCATION COMPLETED !!!
Listing 1. TSC Relocator output during relocation of SWTP 8K BASIC version 2.0.
what they are. An address of FFFF tells the Relocator that there are no more, so it completes relocation and types its message.

In the process of relocating the program, the Relocator changes several hundred addresses; Listing 1 doesn't really show all of them. With this and a disassembly listing, you could go ahead and move BASIC yourself, but it would be a massive job to make sure you didn't miss anything. So, after I moved BASIC, I wrote another program to compare the original BASIC with the relocated BASIC; Listing 2 is a complete list of all locations in the origlnal program that require changing.

For instance, the first address printed in Listing 2 is 0101. If you look at location 0101 of the original BASIC, you see the byte $0 B$; it's part of the instruction 7E 0B91, which is a jump to location OB91. After BASIC is moved from 0100 to A100, that instruction should be changed to 7 E AB91. So, before the move, location 0101 had a OB; after the move, location A101 will have an AB. Every-
thing that started with 0 before will now start with A, and everything that started with 1 before now starts with B. With the aid of Listing 2 and a lot of patience, you can move BASIC to anywhere you want even without the TSC Relocator.

Although ultimately BASIC will go into EPROM, the move to A100 was done just for testing purposes. Only locations 0100 through 1DB0 were moved; everything else stayed where it was. This included the changeable data below 00FF and also left behind an area used for the input line buffer and some other variables in locations 1DB1-1E2E and in locations 1E2F through 1EAE. Also left behind was the area used for storing the BASIC source program, starting at 1EAF. These can't be moved into ROM and so have to stay.

But moving BASIC out of 0100-1DBO leaves a big empty hole. The best thing to do is to slide all of the buffer areas and the source text down from 1DB1 and above to 0100 . Hence, all references in the program to 1DB1 were changed to 0100; all references to $1 E 2 F$ were
changed to 0180; and all references to 1EAF were changed to 0200. This makes the BASIC source text start at 0200 and closes up that big empty space. Listing 3 shows exactly what changes have to be made.

The result was a BASIC up at A100 which seemed to work pretty well. At this point I had a brainstorm. Since the SWTP 8K board I used for memory at A000-BFFF had a Write Protect switch (which disables writing into it), I turned the switch to Protect after loading BASIC to make it act like ROM (reading is allowed, but writing is not). Everything died. After a while I realized that this also killed the monitor since it turned off all the RAM memory used by INEEE and OUTEEE. There was no chance to test the relocation this way. Relocating BASIC and making it work in RAM was the theoretical part; now came the practical part of actually moving it into EPROM.

As you can see by comparing Listings 1 and 2, relocating BASIC with the TSC Relocator (Listing 1) is a lot easier than going through BASIC and manually changing every affected
address (Listing 2). But the Relocator can't relocate a program into EPROM. Now what? Before continuing, let's look at the EPROMs that we might use.

Choosing the EPROMs

At present there are really only two reasonable choices for EPROMs: the old standby 2708 or the newer, and much more expensive, 2716.

The 2708 EPROM is a $1 \mathrm{~K} \times 8$ chip that is selling for about $\$ 10$ or so at the time of this writing; it will probably be slightly less expensive by the time you read this. It requires multiple power supply voltages of +12 , +5 and -5 volts and is somewhat messy to program.
The newer 2716, on the other hand, is a $2 \mathrm{~K} \times 8$ chip. There are two similar but not interchangeable versions of this IC. The Intel 2716 uses just a single +5 volt power supply and is now also produced by Mostek and others. It is also made by Texas Instruments under the number TMS2516.

But TI also makes a TMS2716, which Is quite different-it uses the same power supplies as a 2708 and also requires a completely different programming sequence. It is not as popular, as you can see from the price. At the time of this writing, the TMS2716 has been at a fairly steady $\$ 30$ or so for months, while the Intel 2716 has risen from $\$ 35$ a few months ago to as high as $\$ 70$ right now; I hope it will be back down by the time you read this.

Since the 2716 holds twice as much, but costs from four times to as much as seven times more, it seems that the 2708 is a better buy. From the IC point of view that's true, but the price of 2708 programmers and boards to use them is so much higher that even with their higher IC cost, the 2716 may be more Inexpensive in the long run.

The new SWTP MP-A2 CPU board has room for four 2716s, for a total of 8 K of EPROM. Owners of newer SWTP systems already have this board, and owners of older systems can update from the older CPU board to the newer one for
about $\$ 50$ if their old CPU board uses sockets; they can just move most of the ICs to the new board. So using the 2716 is a cinch.

Programming the 2716 is aiso a cinch. SWTP makes the MP-R 2716 Programmer for $\$ 45$. it consists of a printed circuit board that plugs into one of the I/O ports and contalns a few iCs aiong with a socket for one 2716. This is a "zero Insertion force" socket, which has a short handie on the side. When the handle is moved to the unlocked position, the socket opens up to receive a 2716 EPROM. When the handie is locked, the socket grabs the pins of the 2716 and hoids it tight.

Inciuded with the MP-R is a cassette with a program that does ail the programming for you. This program uses a biock of memory starting from location 0800 as a data buffer for the data to be programmed into the EPROM, but any other area of memory can be used. The program can check that a 2716 is reaily fuily erased, can read the contents of a 2716 Into the buffer at 0800, can read a program from cassette into that buffer (even if it is intended for somewhere eise), can perform some editing on it, can write the contents of the memory buffer into the EPROM and can compare the contents of the EPROM with the contents of the memory buffer to verify that the programming was done right. Thus the program can be used to program an EPROM from cassette and can aiso be used to read one EPROM and copy it into another.
At this price, the SWTP programmer is a bargaln; no other programmer even approaches it in value. The new CPU board also makes the job of using 2716 s easy. But this is offset by the 2716's high cost. At today's prices of $\$ 60$ - $\$ 70$ each, a set of four to hoid BASIC wouid cost about $\$ 250$. That's a bit steep. (Although if the price goes back to the $\$ 35$ range by the time this article appears, the price of $\$ 150$ or less for 8 K of EPROM will be more in line with the price of RAM, and may make

CHANGE LOCATIONS	FROM	TO
$-\cdots$	-.-.	$-0 .-$
$014 E / F$	EAF	0200
$0 C 34 / 5$	1E2F	0180
$0 E 36 / 7$	1DB1	0100
$1515 / 6$	1E2F	0180
$153 C / D$	1EAF	0200
$15 D E / F$	1E2F	0180
$15 E 5 / 6$	1E2F	0180

Listing 3. These changes move the BASIC source text to 0200. With 16 K of RAM, this will leave almost $151 / 2 \mathrm{~K}$ for source text.
the PROMing of BASIC very worthwhile.)

Because of its lower price, the 2708 EPROM is aiso popular. Although SWTP doesn't make any 2708 boards or programmers, there are several compatible ones available. Let's look at a coupie.

Micro Works 2708 EPROM Boards

Micro Works (PO Box 1110, Dei Mar CA 92014) makes both an EPROM board (\$120) and a 2708 programmer (\$100). Their PSB-08 EPROM board is quite interesting. It is a CPU-sized board that plugs into the main SWTP bus. it has sockets for eight 2708s, for a total of 8 K . A DIP switch is used for selecting the address for this 8 K memory block; the 8 K block can start at $0000,2000,4000$ or any 8 K block up to E000.

When PROMing BASIC, a logical place to put the 8 K of EPROM is in addresses C000DFFF, which are otherwise not used. The board can also be used at E000-FFFF for custom monitors to repiace MIKBUG or SWTBUG. (They seil Smoke Signal Broadcasting's SMARTBUG monitor on a 2708 EPROM for use with their board.)
2708 EPROMs require a +12 voit supply, among others. This board uses that voltage directly, without reguiation, on the assumption that it is fairly marginal in the first place. if you have upped it (using some of the tricks we discussed in the first articie in this series in the March 1979 issue of Microcomputing) to above 12 voits, Micro Works has a 12 voit reguiator that can be instailed on the board. It would be a good idea

for the TiS-80 from Micro-Mega

CASSETTE CONTROL UNIT

- Speed up your cassette tape handing - Pinpoint program locations on tape with an audible monitor Get protection from recording and playback glitches resulting from ground loops • Eliminate the tedious Plugging and unplugging of recorder cables.
manual control of the recorder and thore. You get instant beginning or end of a program? Flick another switch and you'll hear it All cables remain plugged in all the time.
The Micro-Mega Cassette Control Unit does a lot to improve the appear. ance of your TRS-80 system, too. As shown, it's in a $21 / 2^{\prime \prime} \times 5^{\prime \prime}$ box which snuggles between the keyboard and your recorder. There is no need to move the recorder, and all cables come neatly into the unit. The Cassette Control Unit is tailored to
other recorders as well.

CASSETTE CONTROL UNIT.
Add $\$ 1.00$ for postage and handling

CPU MONITOR

Ever find yourself with a blank screen wondering what your computer is up to? The Micro. Mega CPU Monitor can tell you, for example: - " your CPU is in a loop with no exit, - When a long sort is nearing completion, or - If a key bounces during keyboard input. The CPU Monitor lets you listen to all CSA VEs and CLOADs and will help you quickly find the correct recorder volume setting. If you have an expansion interface, you
will always know whether the real-time clock is on or off because you can hear it. The Micro-Mega CPU Monitor gives a voice to the Z.80 microprocessor in your TRS 80 by using AM radio circuitry to pick up the computational Thythms of the CPU, which are ampiified and played through a loudspeaker The pickup unit of the CPU Monitor, shown at left in the photo, goes under your TRS. 80 keyboard. It is connected by a $36^{\prime \prime}$ cable to the speaker and
control unit, which includes an onloff volume control and an $1 E D$ "power. control unit, which includes an on/off volume control and an LED "power. the photo. No battefies are needed and no electrical connections to your
 The photo. No batrel
TRS. 80 are required.
By listening to the CPU Monitor, you will soon become familiar with the "personalities" of the programs you run and whether they are executing in a normal way. A dramatic use of the CPU Monitor is in the great enhancement which it provides for computer games. (See "Gaming Environment" below.)
CPU MONITOR. Add $\$ 2.00$ for po

THE GREEN-SCREEN

The eye-pleasing Green-Screen fits over the CRT of your TRS-80 Video Display and gives you improved con rast with reduced glare. You get bright, luminous green characters and graphics like those featured by very xpensive CRT units.
The Green-Screen is closely matched to the color and texture of the TRS-80 Video Display and improves the overall appearance of your system. It is at
tached with adhesive strips, which do not mar your display unit in any way The Micro-Mega Green-Screen gives improved video display visibility for all applications and is especialiy effective in creating dramatic, high-ımpact displays for computer games. (See "Gaming Environment" below.)
THE GREEN-SCREEN.

Add GREEN-SCREEN................. for postage and handling

THE ULTIMATE STAR TREK PACKAGE

Tired of trivial computer games? This complete Star Trek package will provide you with endiess fascination
and challenge In addition to the program cassette. it includes comprehensive instructions, a pad of "Voyage Log" record sheets, and a free-standing "Torpedo and Maneuvering Chart
The package is built around the latest version of Lance Micklus incom.
parable Star Trek III, a 13.000 byte program with a host of subtle and imag.
inative feafures, which include numerous dynamic and spectacular graphic
displays. Star Trek ill puts you in command of the Enterprise cruising in a
dis
galaxy of 192 quadrants filled with uncharted hazards, including hostile
Klingons. pulsars, and black holes. You have at your disposal scanners.
various weapons and defense systems, on-board computers, and a loyal
crew. (You will need them all to survive the Klingons.)
Your mission is to rid the region of Klingons and to locate five inhabitable planets, all within 300 stardays, ber
bered. High scores are possible only with carefui planning and effective battle tactics. The "Voyage Log" sheets will guide your strategy, and the "Torpedo and Maneuvering Chart" will give you a vital edge in combat. (When you engage three Klingon ships you can't afford to miss.) STAR TREK PACKAGE (for Level II, 16 K only).
Add $\$ 1.00$ for postage and handling

CREATE YOUR OWN SPECTACULAR

GAMING ENVIRONMENT [and save 55.00]
The Enterprise is in battle trim with deflector shields at full power. As her captain, you are taking her into combat. The battle-stations siren rings in your ears and "CONDITION RED" flashes on your monitor screen. You call for warp drive and key in the coordinates of the quadrant where your scanners have detected Kling.
on ships. As you select the warp factor, you hear the reassuring clicking of your navigational gear as it ac. on ships. As you select
tivates the warp drive.
Suddenly, you break out of hyperspace and your monitor displays the chilling sight of three Klingon Battle Cruisers floating on your screen! Their evil shapes glow in luminous green against the black void of space Momenis lalier, you hear he chath highenery bim You have been hit! You hear the dismal sound of the damage control alarm as "DAMAGE TO WARP DRIVE"
and "DAMAGE TO PHASERS" flash on your screen. The Klingons have stopped firing! The Enterprise is crippled, but your best weapon is stilli intact, and it's your turn now! You key in the command for photon torpedoes. As your screen agsin displays the position of the Klingon ships, you select a firing vector from
your torpedo chart and key it in. Now you hear the buzz of your photon torpedo as you see it speeding toward a Klingon ship. It strikes him dead-center! As you watch, the Klingon Battle Cruiser disintegrates, accompanied by a satisfying crackling sound.
Does the above scenario sound far-fetched' Not at all. It's a small sample of what you will experience with Micro-Mega's Gaming Environment, which consists of. The STAR TREK PACKAGE - The GREEN
SCREEN and The CPU MONITOR. The fast paced and dynamic action reflects the superb Star Trek Ill SCREEN and - The CPU MONITOR. The fast paced and dynamic action reflects the superb Star Trek 111 program together with the "Voyage Log" and "Torpedo Chart" of the Star Trek Package All of the unique
graphic displays are greatly enhanced by the Green-Screen. Finally. the uncanny sound effects are prographic displays are greatly enhanced by the Green-Screen. Finally. the uncanny sound effects are pro-
duced by the CPU Monitor, which faithtully picks up the FOA. NEXT. duced by the CPU Monitor, which fathtully picks up the FOR. NEXT loops and other CPU patterns. which harsher notes of the weapons salvos. Once you've tried u, you won't any longer be satisfied with silent com. puter games.
Remember that with the Gaming Environment you also get all of the other excellent features of the CPU Monitor and the Green-Screen for non-gaming applications. You also save $\$ 5.00$ off the combined cost o the individual items.
GAMING ENVIRONMEN
Add \$3.50 for postage and handling
> erms: Check or money order, no CODs or credit cards, please. Add amount shown for postage and handling to price of the item. All items shipped within 48 hours by first class or priority mail. Virginia residents, add 4% sales tax.

Micro-Mega - P.O. Eox EeE5 . Arlington, Va peeos

PET and TRS-80
 ''LOAD and GO" SOFTWARE PRE-RECORDED BUSINESS PROGRAMS

No Programming Experience Required!

*GENERAL LEDGER 66 Accounts. For home, businesses, sole proprietorships, small corporations. $\$ 29.95$ plus $\$ 1.50 \mathrm{~S}$ \& $\mathrm{H}(8 \mathrm{~K}$ min. user memory)
*CHECKING ACCOUNT For personal bank accounts. \$23.95 plus $\$ 1.50 \mathrm{~S}$ \& H. (8 K min. user memory)
*RENT ACCOUNTS Records of Rental Property $\$ 29.95$
*LEGAL DIARY For attorneys (client accounts). $\$ 23.95$ plus $\$ 1.50 \mathrm{~S}$ \& H .
*TRUST ACCOUNTS For attorneys (client accounts). $\$ 23.95$ plus $\$ 1.50 \mathrm{~S}$ \& H.
Send check, money order or charges (VISA or MASTER CHARGE, include charge number and exp. date)
Specify which computer is used

- COMPUGERS ORE -

1314 South King Street, Suite 1156
Honolulu, Hawaii 96814
Since 1977-Over 3,000 programs in use

Kilobaud Microcomputing

 SubscribersFrom time to time Kilobaud Microcomputing makes its subscriber lists available to carefully-screened companies and organizations whose products, services or information may be of interest to you. In every case, we must approve all organizations wishing to mail to our subscribers. In every case they receive a list of names and addresses only - no other information we may have is divulged. Each organiza-
tion may use the list only once and agrees never to make any personal or telephone solicitations from it.
The overwhelming majority of our subscribers appreciate this controlled use of our mailing lists-it helps them shop conveniently by mail for products and services they need, often at substantial savings. A few people prefer their names not be used. It is to them we address this message.
If you do not wish to be a part of this service, please complete the form below. . . your name will not be used in this manner for any reason.
(If you asked us in the past to remove your name from our lists, there is no need to repeat the request.) Please allow about six weeks for your request to take effect.
\square I wish to have my name removed from the list of subscribers receiving mail other than the regular subscription to Kilobaud Microcomputing.

Mail this form with your mailing label from the latest issue (or fill out the information as it appears on the label) to:

> Kilobaud Microcomputing Subscription Services Dept. P.O. Box 997
> Farming dale NY 11737
to add filtering to the +12 volt supply.

The SWTP CPU board has a 6810128 byte RAM that is addressed at A000 through A07F and is used by the monitor. In case you need more space, the Micro Works EPROM board has a 1 K byte RAM consisting of eight 21L02 ICs. With a DIP switch, this RAM can be addressed at any 8 K boundary, such as 0000, 2000, 4000, up through E000. It can replace the 6810 on the CPU board when addressed at A000.

But the most interesting thing about the board is its circuitry for relocating the I/O. As you know, the SWTP system has its I/O ports located at addresses 8000 through 801 F. This leaves room for 32 K of memory below and 12 K or more memory above. But since the I/O is smack in the middle of this, most SWTP systems stop at 32 K ; those that have more seldom use the additional memory, since few stock programs use that area.

The Micro Works EPROM board has a simple circuit that allows moving the I/O port addresses from 8000 up to F800. This requires a small change on the motherboard and allows 56K of RAM (up to address DFFF) to be installed in the system, along with 7 K of EPROM (1 K is replaced by the I/O ports at F800). What it essentially does is to replace part of the address decoding circuitry on the motherboard with the decoder on the EPROM board.

When you do this, you also have to change some software. The monitor (whether it's MIKBUG, SWTBUG or whatever) will have to be modified to change its I/O addressing. Likewise, BASIC and the Cores editor/assembler also access the I/O ports directly (rather than going through the monitor) when they want to check for a control-C character, and so they have to be modified. Micro Works gives some of those changes in their manual.

The Micro Works model B-08 2708 Programmer is a companion unit ($\$ 100$). Except for the price, it is in many ways similar to the SWTP 2716 programmer.

The B-08 plugs into port 4 of the I/O bus and has a zero insertion force socket for a 2708. The manual lists a program that uses a memory buffer area from 0000 to 03FF for holding the data to be written to the 2708. The program can test whether an EPROM has been fully erased, read the contents of a 2708 into the memory buffer area, initialize that buffer, read a cassette tape originally intended for another area of memory into that buffer, move the contents of another section of memory into that buffer, write the buffer into the 2708 and verify that the 2708 contents match the contents of the buffer.

In addition to listing the programming program in the manual, Micro Works also makes it available separately on either a Kansas City cassette starting at address $1000(\$ 10)$ or on a 2708 EPROM starting at either address C 000 or FC 00 ($\$ 30$); the latter also contains the four reset and interrupt vectors that the 6800 needs up at addresses FFF8 through FFFF.

Both Micro Works boards appear to be well designed and built; the only fault I could find with them was that the program in the B-08 manual is the EPROM version addressed at C000, and hence not directly usable by the typical purchaser. If you don't want to buy their extra cost cassette or EPROM version of the program, you first have to reassemble their listing to place it at a more reasonable address.

The Smoke Signal Broadcasting 2708 EPROM Boards

The SSB model P-38 EPROM Board (\$129) also has sockets for eight 2708s. A DIP switch on the board allows this 8 K block of memory to be addressed at $0000,2000,4000$ or any 8 K boundary up through E000. When used at E000, it can replace your standard 6810 monitor on the CPU board. SSB produces their own monitor, called SMARTBUG, for this purpose.
When used to replace a standard monitor, this board has some interesting options. One
option is to select one of the 2708s to be addressed at two addresses-E000 through E3FF and also FCOO through FFFF. You can then use the same 2708 for both the monitor at E000 and also for the reset and interrupt vectors at FFF8-FFFF. If you don't want to do that, you can use the socket on the board to hold your 6810 monitor (MIKBUG or SWTBUG).
There is an advantage in having it on the EPROM board rather than just leaving it on your CPU board. When the 6810 is plugged into the CPU board, it is not fully decoded. Each location of the 1 K monitor actually has elght addresses, so that It uses up the full 8 K block from E000 through FFFF. But when it is plugged into the EPROM board, it is fully decoded and only uses up the addresses from EOOO through E3FF and FCOO through FFFF. Hence, the remaining space-from E400 through FBFF-can be used for 2708 EPROMs.
The POP-1 2708 Programmer (\$129) is a separate box that plugs into a modified EPROM card (the P-38-1 at \$174, which also contains an interface for the Oliver paper tape reader) to program 2708s. It attaches to the P-38-1 with a ribbon cable and has its own power supply for generating the 26 volts that the 2708 needs for programming. It includes a cassette with the required software to program.

As with any system containing 2708 EPROMs, the +12 volt computer supply has to have the right voltage and has to be free of ripple. SSB makes a PS-1 Power Supply Kit (\$25) for this purpose to increase the ± 12 volt supply outputs to 16 volts, so that an on-board regulator can then properly regulate this down to a clean 12 volts. You may want to read the discussion of power supply fixes in the first of these articles, back in the March 1979 Issue of Microcomputing.

Other EPROM Boards

Actually, building an EPROM board with today's ICs is not difficult. You could bulld your own (using the circuitry on the

$$
\begin{aligned}
& \text { * TSC } 6800 \text { RELOCATOR * } \\
& \text { PRESENT PROGRAM: } \\
& \text { GEGIN ADDRESS? O100 } \\
& \text { END ADDRESS? } 1 D B 0 \\
& \text { STORE IN? } 4100 \\
& \text { EPROM ADDRESS? C100 } \\
& \text { FIX REFERENCES? Y } \\
& \text { LOAD FROM TAPE? N } \\
& \text { DATA BLOCKS? Y } \\
& \text { EEGIN ADDRESS? }
\end{aligned}
$$

Listing 4. The TSC Relocator as patched asks for an address to put the BASIC and also for an EPROM addross to lelocate to.

SWTP MP-A2 board as a model, for Instance).

There are also several other ways. JPC Products Co., PO Box 5615, Albuquerque NM 87185 , is offering a separate 2716 EPROM board that holds 8 K worth of EPROM and sells for around $\$ 50$.

Two EPROM boards are also available from Gimix, Inc. (1337 W. 37th Place, Chicago IL 60609). One is a 4 K PROM and programmer board, which holds four 2708s. It can be used as a regular EPROM board, but it can also program any or all of the four. It has a DIP switch for addressing to 0000, 1000, 2000 or any 4 K boundary. The other board is an 8 K board with 2708s; it can be addressed to any 8 K boundary from 0000 to E000 with a DIP switch.

Another EPROM board is available from Kendra Co., Box 1575, Independence MO 64055 (\$25). This one holds either two 2708s for 2 K or two 2716 s for 4 K and is designed as an adapter board that plugs into the 6810 socket on the MP-A CPU board, instead of the monitor that normally sits there. Obviously, none of the 4 K boards is usable for PROMing BASIC, whlch needs slightly over 7K. But the 8 K boards will do quite nicely.
A bare 2708 EPROM board, which holds up to 16 K , is available for $\$ 27.50$ from Walter Wimberly, 2914 Sunrise Dr., Orlando FL 32803. The most inexpensive way to program 2708s is to modify the SWTP 2716 Programmer. More on that in a future installment.

PROMing BASIC

So let's return to the problem of PROMing BASIC. Before I started on this review of available EPROM boards and programmers, I left you with information on how to relocate BASIC anywhere else in memory. Now let's finish talking about how to get it into EPROM. Since they are the easlest to use, let's talk in terms of using either the SWTP 2716 programmer or the Micro Works 2708 programmer.

Both of these require that you put the program to be

PROMed into a memory buffer area. The Micro Works uses the memory from 0000 to 03FF for a 1 K buffer, so you'd have to split BASIC into eight 1 K pieces and program one at a time. The memory buffer for the SWTP programmer is normally at 0800 but can be moved anywhere in memory. You can program just one 2 K segment or you can store all 7K of BASIC In memory at once and program the 2716s sequentially.
In any case, we now have to move BASiC from wherever It is in memory to the buffer area the programmer needs and also change all the addresses to the ones needed. For Instance, if you're going to put BASIC Into 2716 EPROMs on the MP-A2 CPU card, you need to address everything in the range of C000DFFF. You could start BASiC at COOO and have it go to DADO, but it is probably easier to have It go from C100-DBD0 so as to make it more like the original 0100-1DB0 version. This can be done In two ways-first change the address and then move or else first move and then change addresses.
BASIC can be physically moved from one place to another fairly easily. You can write it on tape and then use the software that comes with the programmer to read the tape back into the buffer, or else you can write a program to move it from one place In memory into another. The TSC Relocator can also move memory blocks without changing them.
Changing the addresses is a bit harder. The TSC Relocator example at the beginning of this article showed how the Relocator moves and relocates at the same time. It moves and relocates into the same place in memory. But in this case we don't want to do that-we have to move to one place in memory but relocate the addresses to another place. In this case, we want to relocate the addresses to C000, but we need it moved into RAM so it can be burned into the EPROM by a programmer.
Since the standard TSC Relocator can't do that, we have to patch it as shown In Program 2. This allows us to relocate the
addresses from one area of memory (such as EPROM at C100) but actually physically move the program somewhere else (such as RAM at 4100). Listing 4 shows the new dialog with the Relocator to do this. (The idea behind Listing 4 was to move BASIC to start at 4100 while relocating it to get it out of the way, then load in the software for the PROM programmer and then use the TSC Relocator again to move BASIC from 4100 back down to the buffer area for the programmer.)

Disassembly/Reassembly

There is another way to relocate BASIC-use a disassembler to change BASIC back into assembly code, change the ORG statement to ORG \$C100 and then reassemble. Although i haven't tried it, i think that BASIC is too long for its assembly language to fit into even a 32 K system. The assembly language could be broken up into pieces and assembled separately, but this would make it rather difficult to pass labels back and forth between them. (Disassembly/reassembly of such a long program would be easy if you had a disk, but then you'd probably not be too interested in PROMing BASIC in the first place.)

Though there are a number of disassemblers available, most of them output their disassembled code with addresses instead of operands. But we need one that will make up labels so that the assembly code is in the right format to be accepted by an assembler.

There are two that i know of: The SCG-68D Source Code Generator by the Amador Group (PO Box 2032, Menlo Park CA 94025) costs $\$ 30$ on diskette and runs on the SWTP floppy disk system. The SG-1 from Smoke Signal Broadcasting costs \$12 on cassette, or \$31 on a diskette for the SSB floppy disk. Percom Data Company has some patches to make the SSB generator usable on its disk as well.

Unlike a disassembler, which lists actual addresses for operands, a source generator makes up labels for them. Labels for

Program 2. Patches to the TSC Relocator to allow relocation for EPROM but storage in RAM.
items within the program are given as part of the assembly code; labels for items outside the program are given as EQU pseudo-ops. Memory areas used for data can be specified to the generator, and it will then try to translate them into FCB
or FCC instructions; it will also do so when unrecognizable instructions are found. A good source generator should be smart enough to recognize a block of ASCII text and translate it into FCC instructions, for instance.

Listing 5 shows the difference in output between that of the SWTP disassembler and the SSB Source Generator when we disassembie the same part of 8 K BASIC. The disassembler is what you need when studying a strange program, but the source generator is needed if you are going to reassemble. You can see why from the listing.

The Amador source generator has to work with the SWTP floppy disk and is the only one I know of that does right now. Its output is compatible with the TSC Editor and Assembler, which runs under the Flex operating system, so that you can then edit the assembly code before reassembling.

The SSB source generator will work with either cassette, the SSB floppy disk or (with the Percom patches) the Percom floppy disk. It is quite versatiie; you can specify whether you want the output printed on the terminal, printed on a PR-40 printer on port 7, stored on an SSB disk or output to cassette.

Disk or cassette output can be in either Cores editor-assembler format or in SSB Editor/Assembler format. (The SSB SE-1 Editor and the SA-1 Assembler are actually modified versions of the TSC Editor and Assembler, so the source generator output can be edited or assembled by the TSC software as well.)

But disassembling and then reassembling BASIC is really not too practical a method of relocating. As I mentioned before, the assembly code for BASiC is probably too iong to fit into even very large systems, and so the amount of work to do the reassembly in pieces would be very large unless you had a disk system. In that case you probably don't need BASIC in EPROM; not only that, but with a disk system you want a BASIC other than SWTP 8K BASIC verslon 2.0 , since there are others that have disk commands for storing programs and using disk files. Since most of these BASICs are over 8 K in slze, they will require additional EPROM boards to hold them.

TBS DEALERS HAVE FUKL SXSTEMIS SUPPORT.

You've just purchased a Centronics printer. Where do you get the printer supplies needed to keep it functional? You've just purchased a disk drive. Where do you find a source of quality diskettes and storage devices to keep them organized? You have invested over $\$ 1,000$ in your system. Where will you find all the necessary items to keep it operational? The answer: TBS and its affiliate DEALERS.

The LIBRARY 100 Software Pack was published in November of 1978. Since that time, it has been widely accepted throughout the United States and 31 countries as a major advancement in microcomputer software. Now, we at TBS have expanded our endeavor to better meet the product needs of our customers.
A camera is useless without film; a typewriter is useless without paper; a computer system is useless without the necessary support to make it completely operational. TBS is leading the way in systems support, and we are proud to announce a new concept for the microcomputer industry - FULL SYSTEMS SUPPORT. Mainframe and minicomputer industries have been following this concept for years. However, until now it has not been available for microcomputer systems. TBS Full Systems Support is aimed at helping you, the computer owner, acquire the necessary support items quickly and inexpensively through a network of affiliate dealers nationwide.

We also realize that there is limited material available on computers in general. To fill these needs we have produced SYSTEMS EXTENSIONS. This is a unique publication which provides a theoretical computer background for the novice computer user and some specific points of programming interest for TRS-80 users. Seventeen articles are included in 63 pages of solid text.

But even more important, SYSTEMS EXTENSIONS provides a source of supply for a series of products applicable to all computers. Through this publication TBS and its affiliate dealers offer over 300 items including software, diskettes, cassettes, printer supplies, storage units and furniture. In other words, TBS and its dealers stock everything to make the microcomputer a full scale business system.

At the heart of your computer system is the software. We now offer the following programs for the TRS-80: TBS Business Mail System for dual disk and printer; Check Register Accounting System for dual disk and printer; Basic Toolkit, a programmers aid; System Doctor, a computer diagnostic program; Checkbook II, cassette based personal finance; Information System, an "in-mem" data base manager; Analysis Pad; a columnar calculator; Terminal Control, for RS-232 tele-communications; Exerciser, for establishing physical fitness goals and regimens; plus, Electric Pencil; Fortran by Microsoft; NEWDOS + ; and of course, the Library 100. Details in full are included in SYSTEMS EXTENSIONS.

We at TBS believe in the microcomputer revolution. Our purpose is to serve you, the microcomputer owner and user, by supplying the necessary items you need. To this end we have published SYSTEMS EXTENSIONS, and it is available nationwide through TBS dealers and Radio Shack Associate stores for only $\$ 3.00$. For further information please call us at the number below.

The Bottom Shelf, Inc. - вз3 P.O. Box 49104

Atlanta, Georgia 30359
Phone: 404-939-6031

2708 EPROM for the S-100

Abstract

Out of frustration, the author of this article designed and built this versatile EPROM board. The result of all that happened is that his frustration is your gain.

There have been many times when I have wanted the capability of having my Altair ready to run without having to
key in the bootstrap after turning on the switch. The routine of loading in a bootstrap every time I had to power up the ma-
chine was getting a little old after a year of tinkering. Besides, whenever anyone came over to visit or to see the Altair (you've

Completed boards \#1 and \#2 (\#1 is on the bottom). Extra ICs on board \#1 are for extra functions not discussed or used on board \#2. Board\#1 uses a different type of negative regulator, which is mounted on the lower right of board. Note that the word caution is written on board \#2 around the negative regulator. Not discussed was the use of bypass capacitors. Rule of thumb is to use one (. 01 or .1 uF) for each three ICs present and place them close to the ICs.
got a what at home?), it took a little of the zing out to have to sit down and key in a short program from the front panel. The way that my luck would run usually meant I had to key in the bootstrap twice since l'd make some small mistake loading the first one while trying to explain what I was doing!

I had a good operating system in CUTER, from Processor Technology. I was satisfied with it, but it required 3 K RAM (or 2 K ROM and 1 K RAM immediately above the ROM). Loading CUTER into RAM was no problem as a short (41-step) bootstrap would load in a larger relocating loader that automatically loaded CUTER.

But there were two problems with that sequence. First, it required 3 K of RAM, and, second, a "runaway" program (that is how most of mine work the first 10 or 15 times!) would, 99.9 percent of the time, destroy the CUTER routines, along with the errant program itself. There is nothing that gets older than having to repeatedly reload the bootstrap, then CUTER, then the problem program, then test it ... have it eat the whole works again!

So there had to be an easier solution. Of course! Put the whole works into EPROMs!

Wiring side of board \#2 after addressing and buffer sections have been assembled according to the directions in the text.

Quick, I had to find the latest issue of Kilobaud and find someone who made a board that would take 2708s and had 1 K of RAM aboard.

What ... nothing? All that was available at the time was one board that used 1702As for the EPROM and one other that did use 2708s but didn't allow for placing of the 1 K of RAM just above $2 K$ of the ROM. Well, I now had to look at doing something else.

I thought about modifying one of my RAM boards so that the 2 K region that CUTER was in could be protected after loading, but I decided agalnst this because I did not want to make a unique modification to one of my RAM boards. Besides, it still didn't solve the problem of having to key in the bootstrap every time the computer was turned on.

I discovered that Processor Technology was marketing their General Purpose Memory Board, which would be exactly what I wanted! In fact, it would hold 10 K of 2708 s and 1 K of RAM. Perfect! Not so fast, though. At the time I wanted it they were still months away from delivery and could only say, "Next month . . . maybe." I just couldn't stand the wait and was going to have to build one.

As it turned out, that was, and still is, an excellent choice ... I saved about $\$ 55$ over the cost of the PTCo GPM. There are now several boards available as kits that will allow intermixing of RAM and EPROM, so
you aren't forced into this decision the way I was. However, I think you won't regret making the decision to build one by following along with this article. Keep in mind that although the construction steps are laid out for building a mixture of EPROM and RAM, you can configure your board any way you want. With these objectives in mind, let's get started building your board!

Construction

I have built two of these boards, and both worked on inltial power-up. They were built on Vector 8800 V boards using
 ig. 1. Schematics of positive and negative voltage regulators.

Fig. 2. Layout of prototype board using $2 K$ EPROM and $1 K$ RAM.

Fig. 3. Addressing schematic for use with prototype board (from Kilobaud No. 1, p. 41).

2102 RAMs		2708 ROMs		74367s	
Pin No.		Pin No.		Pin No.	
8	(AII)	8	(All)	9	IC13
4	"	7	'	7	IC13
5	"	6	"	5	IC13
6	"	5	"	3	IC13
7	"	4	"	13	IC13
2	"	3	"	11	IC13
1	"	2	"	9	IC12
16	"	1	"	7	IC12
15	"	22	"	5	IC12
14	"	23	"	3	IC12
12	IC1	9	IC9\&10	10	IC11
12	IC2	10	IC9\&10	6	IC11
12	IC3	11	IC9\&10	4	IC11
12	IC4	13	IC9\&10	2	IC11
12	IC5	14	IC9\&10	14	IC11
12	IC6	15	IC9\&10	12	IC11
12	IC7	16	IC9\&10	14	IC12
12	IC8	17	IC9\&10	12	IC12

Table 1. Interconnection table for memory and drivers. Example: Pin 8 of all 2102s connects to pin 8 of all 2708s and to pin 9 of IC 13.
the Vector Slit 'N Wrap wiring tool. I really can't imagine wiring this project in any other manner, but any method of construction (point-to-point or wiring pencil, for example) is completely acceptable.

Step 1. Install wire-wrap pins on bus pad connectors for A0A15, DI0-DI7, DO0-DO7, SINP,

SOUT, PDBIN and MWRITE and solder them in place with a lowwattage iron. If these pins are not soldered, intermittent connections to the bus will result.

Step 2. Install $+5,+12$ and -5 volt voltage regulators (see Fig. 1). Check them out by removing all boards from your computer (just in case!) and

Fig. 4. Address bus drivers. Note that connections shown for 2102 and 2708 ICs are for all ICs of that type installed.

Altair/S-100 Bus	Pin/IC	Number	
36	11	IC1	
35	11	IC2	
88	11	IC3	
89	11	IC4	
38	11	IC5	
39	11	IC6	
40	11	IC7	
90	11	IC8	
79	10	IC13	
80	6	IC13	
81	4	IC13	
31	2	IC13	
30	14	IC13	
29	12	IC13	
82	10	IC12	
83	6	IC12	
84	4	IC12	
34	2	IC12	
95	9	IC11	
94	7	IC11	
41	5	IC11	
42	3	IC11	
91	13	IC11	
92	11	IC11	
93	13	IC12	
43	11	IC12	

Table 2. Altair/S-100 bus connections to memory and driver ICs.
measuring the output voltages. Remember: Power off before removing or replacing any boards! Now install all IC sockets and connect power and ground to appropriate pins (Fig. 2). Doublecheck these!

Step 3. Install two 74LS139s and one 74LSOO as in Fig. 3. Verify operation by examining C000 (hex) to ensure correct logic levels.

Step 4. Install three 74367 address/data buffers. Ensure appropriate enable lines function by examining different addresses (Figs. 3 and 4).
Step 5. Position eight 16 -pin sockets and two 24-pin sockets. One address bit at a time, using your wire-wrap tool, daisy-chain that one bit to all memory ICs. Go slow and double-check! (This will be a major source of errors if hurried!). After all bits are wired, install in the computer and use a VOM (simple multimeter) to check proper logic at the correct pin of each socket for each address bit. Don't install any memory chips yet! (Tables 1 and 2 list IC interconnections for memory.)
Step 6. Wire data-in (DI) lines
to RAM chips (not the two 24-pin ROM sockets) using the same technique as in step 5. Verify that DIO-DI7 are on the correct pins by examining C800 (hex) and deposit one bit at a time, 0 through 7 , while verifying (see Fig. 5).

Step 7. Wire data-out (DO) to RAM and ROM chips the same way as in step 6.

Step 8. Install one 21L02 RAM in one of the sockets (start with bit 0). Attempt to deposit a 0 to it. If successful (you should be!), repeat with all eight RAM positions. If unsuccessful, check the following: (a) +5 and ground are connected to RAM; (b) enable line connected to RAM from 74LS139; (c) READ/ WRITE logic connected to RAM; (d) data out buffers functional.

Step 9. Remove RAM. Load one ROM. Power up and singlestep through. If DO-D7 all indicate correctly, you're just about done. If not, then check the following: (a) enable logic to the 2708s from the 74LS139; (b) ROM programmed; (c) doublecheck power supply $+5,+12$, -5 to proper pins.

Step 10. Power down and

When Milton Bradley unveiled its computerized electronic memory game last Christmas, it fast became the entertaiment hit of the season. Now you can enjoy the same challenging game at home, without having to pay for the dedicated hardware! Instant Software introduces Mimic, the fast-action memory game for the PET.

In Mimic, players are shown a sequence of graphic characters that appear in random locations within a 3 $x 3$ grid. The trick? To remember the order and location in which the characters were shown, and "mimic" that se-
 quence on your PET's numeric keypad.

5 Different Versions!

In the basic version of the game, you need only remember five locations to win. In the second version, you must complete a sequence of ten. Once you've mastered those two, try the third variation, where the number of characters in the sequence can be increased endlessly-or until you give up. Mimic masters will want to go right for Reverse Mimic, where you must respond by entering the reverse of the sequence shown. And the fifth version-Super Mimic-where you get a different sequence every time, with each one faster than the one before, will keep even the most accomplished copycat on the edge of his seat 'til he's ready to throw in the towel.

With so many different ways to play, it's not hard to see why people of all ages enjoy this exercise in skill, concentration, and dexterity. It's fun, it will improve your memory, and since it's Instant Software, you know you're getting a program you can count on, with documentation that will tell you everything you need to know in language you can understand.

So why pay more for a computer that can play only one game? With Mimic and your PET, you can have the best for less.

Order No. 0039P \$7.95. Available at finer computer stores everywhere. See page 87 for the dealer nearest you.

For the 8 K PET microcomputer.

- 132

Completed board \#2 (wiring side). It's not as hard or complicated as it looks as long as you go slowly and step-by-step as listed in the instructions.
carefully place all components on the board. Power back up and enjoy!

Operation

I must thank Bill Godbout for the address selection circuit; it's copied from his Econoram Board as described on page 41 of Kilobaud No. 1.

If IC14b SINP and SOUT lines are low, then the computer must be looking at memory somewhere or another so pin 4 will be low, which, in turn, will enable IC14a. This half of the 74LS139 functions as a decoder, and one of the four output pins will be low depending on the binary count of pins 13 and 14 (A14 and A15 from the bus).
IC15 functions in exactly the same manner. Part a will enable part b, depending on'which pin Is used for the SELECT IIne (see Table 3 for possible combinations).

Once the address logic decides that the computer wants access to this block of memory, the 74LS00 (IC16) decides if a read or write operation is to be performed. If PDBIN is high, then a low is generated on pin 6 to enable the data out buffers that gate the data from the RAMs or ROMs onto the bus. The READ/WRITE line is significant only to the RAM chips (ICs $1-8$), as RAM can either be written into or read from.

Additional Notes

Both prototype boards were assembled with the requireNote that all numbers used are in decimal.

Fig. 5. Pin diagrams of 2102 and 2708 ICs.

Fig. 6. Addressing expansion to provide for addressing 161 K blocks. Replaces addressing portion of Fig. 3.
on these lines unless you want to expand the board one day.

This was a fascinating project, and you shouldn't be afraid to attempt it even if you haven't wire-wrapped anything before. The construction is conclse, and there are no little hidden tricks or mysteries requiring solution to get the board to function as advertised.

If your computer doesn't have a front panel on it, your job of checkout will be more complicated, but don't give up yet! install the voltage regulators first and wire all IC sockets for power and ground, but don't yet
connect them to the regulators.
For checkout during assembly use a 5 volt 1 Amp bench power supply to furnish power to the ICs and use jumper clips to either 5 volts or to ground for checking out ICs 14, 15 and 16. Use jumpers again to verify that the data lines are all connected properly, and, finally, connect the regulators and install one 21 L02 to check the function of deposit and read with the board installed in the computer.

See, it is a ilttle more difficuit this way, but not having a front panel shouldn't discourage you from building this project.

Table 3. Memory selection table. Use this to select desired pin connections of $\overline{\text { PAGE }}$ and $\overline{\text { SELECT }}$.

SUPER OFFER: 15 ISSUES for $\$ 15$

\square YES . . . enter my subscription for 12 months for $\$ 15$ (a $\$ 15$ saving off the newsstand cost) and send me three more great issues FREE!!!!
Please send me the following issues:
\#1 \#2 \qquad \#3
(please print month \& year)
My alternate choices are:
\#1 \qquad \# 2 \qquad (please print month \& year)

Important: indicate subscription status.

\square New SubscriptionRenewalPayment enclosed
Bill my:
\square VISAMaster Charge

Card \# \qquad
\qquad
Signature
Name \qquad
Address \qquad
City \qquad State \qquad Zip \qquad
Canadian subscriptions add $\$ 2$ per year. All other foreign subscriptions $\$ 23$ one year only, payable in U.S. funds. Please allow 4-6 weeks for delivery of first copy.
Kilobaud Microcomputing / Subscription Services Department / P.O.Box 997 / Farmingdale NY 11737

SUPER OFFER: 15 ISSUES for \$15

\square YES . . . enter my subscription for 12 months for $\$ 15$ (a $\$ 15$ saving off the newsstand cost) and send me three more great issues FREE!!!!
Please send me the following issues:
\#1

$$
\# 2
$$

\qquad
\qquad \#3 \qquad

My alternate choices are:
\#1
(please print month \& year)
(please print month \& year)

Important: indicate subscription status.

\square New Subscription	\square Renewal $\quad \square$ Payment enclosed
Bill my: $\quad \square$ VISA	\square Master Charge

Card \# \qquad Exp. date \qquad
Signature
Name \qquad
Address
City
Sta
__ Zip
p \qquad
Canadian subscriptions add $\$ 2$ per year. All other foreign subscriptions $\$ 23$ one year only, payable in U.S. funds. Please allow 4-6 weeks for delivery of first copy.
Kilobaud Microcomputing / Subscription Services Department / P.O.Box 997 / Farmingdale NY 11737

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 17 PETERBOROUGH NH 03458
POSTAGE WILL BE PAID BY ADDRESSEE
kilobaud
MICROCOMPUTING $^{\text {r.m }}$
Subscription Department - Box 997
Farmingdale NY 11737

Is ISSUES FOR SIS KLIOBAUD MICROCOMPUTINC SUPER OFFER!

Start your own encyclopedia of Microcomputing by taking advantage of this super offer. Hurry though; this offer is limited.

If you've been thinking about subscribing to Kilobaud Microcomputing, this is the time to do it. Subscribe today at the already low subscription price of $\$ 15$ (you save $\$ 15$ off the newsstand cost for one year) and get your choice of three issues from these pages, FREE! Each issue is full of information on software, new products, books, and packed with articles on every possible subject in microcomputing. If you already subscribe to $K B$ Microcomputing, you know what a fine magazine it is. You'll want to take advantage of this super offer by renewing for 12 months and take your choice of these great issues, FREE!

Look over the wealth of information included in these issues. There's little or no information that goes stale. And by subscribing now, you can choose three issues and start your encyclopedia of Microcomputing right away. Simply indicate on the attached postage-paid card the issues you wish to receive. Please include two alternate choices as these issues are limited and they're going fast. Allow 4-6 weeks for delivery. (Your subscription will start with the next published issue.)

Look over these great issues on the following pages...

kibboud microcomputing articles you may have missed during 1977:

January 1977*

February 1977

-ZAP!
\square Chasing Those Naughty Bits
\square Why So Many Computer Languages?
\square The Remarkable Apple Computer
Beware the Wumpus
Will th
Will the Z-80 Crush All Competitors?
Practical Microcomputer Programming Part 2 Oper
The Trouble
A Useful Lean with Mass Storage Systems
Submarine!. a game for the SR-52
The Hobbyist's Operating System
with the Monitor
\square Found. A Use for Your Computer
Patt 2: Interfacing the KIM
a clock program for
\square Sophisticating a Surplus Kevboard
\square At the Races
$\square R C A$ Tries Again. with the 1802
$\square 8080$ vs 370
DCut 6800 Programming Time with this Extraordinary Pro $\square 7 \times 9=56$
\square Learning Computerese
DHow to WIN the Surplus Came
\square Making Money Is Nice
The 8080 You May Have Missed
\square A 6800 Single Stepper
\square Computerized Statement

March 1977

\square Practical Microcomputer Programming. Part 3: Soft ware Tools
The Motorola Way!. review of the MEK68000
\square Let's Hear It for the 680b
The Paper Tape Caper
Computers for Freel 6800 the Astral 2000
\square Journey into the CPU
Only Five Senses
\square Floppy Disks
\square The Jupiter II
How to Win $\$ 25,000$ of Your Own Money . . . Keno game program
\square Using the " $\$ 50$ " Terminal
Dexternal Mass Storage... Part 2: Digital and Audio Cassette Systems
\square Make Your 680b Smarter a cheap memory expander
\square Stop Bugs Now
\square Clocked Logic.... Part 1: The D Type and IK Flip-flops
\square The Cory Details of Cassette Storage
The Fun of Learning BASIC

April 1977

DInterrupts Exposed . . using microprocessor interrupt
Interrupts Exposed ... using microprocessor interrup
DClocked Logic ... Part 2: Some Basic Applications
\square Build an Eight Channel Multuplexer for Your Scope
\square Sorting Routines
\square Number Rounding Program
\square Meet the Tarbell/KC Interface
\square Super-Tester .. a digital design aid
\square The Hobbyist's Operating System ... Part 3 Command Language Processing
\square The Slow-Stepping Debugger
BASIC - The Easy Way
Now You Can Use Software Timing Loops
KHeavy Duty Power Supply
Heavy Duty Power Suppl
Digital Audio
Interfacing the Analog World
Everything about Semiconductor Memory
\square Three-State Logic explanation of a key microprocessor
Automatic Memory Dumper utility dump program for 6800 users
Hangmath ... a new puzzle/game
-Now-BASIC for the 8008 -Even
\square Microprogramming . . an insight into microprocessor de sign
Computerized Babysitter

May 1977

DClocked Logic Part 3. Data Converters and Specia Cure Those End-of-Month Blues with a sales analysis program
Make Your Investment Count the inside view of a custom MP-68
\square Speed Up Your 6800
\square Who's Afraid of RS-232 data communications explaned IIs it High' - or Low' ... understanding logic design con-
\square Know Thyself!. contessions of a kit-builder
\square Protyping Systems Exposed! ... a revealing look at the in tercept $/ f$.
Interrupts Exposed . . Part 2. Implementing an Interrupt driven System
Digital Audio... Part 2: Generating that Werrd Music
Now it's Imsai BASICI
Bridging the Gap. tips on turning an application into a
Adding "Plop" to Your System a nossemaker for com puter games
Lunar Lander
Silence Noisy Teletype Motors . . Part 1 Cetting the Ball Rolling
-A Home Computer Pioneer . . . profile of Don Tarbell

June 1977

Build Your Own Interface
-Computer Club Promotional Techniques
Artillery Practice
Put a Micro in Your School
Torpedoes Away!
\square Build a Pulse Generator
\square A TVT For Your KIM
DThe BYTEDESTROYER review of an EPROM eraser
BASIC Timing Comparisons
DSolving Kevboard Interface Problems
Try Design Co
-Try a Design Console . . for practical hardware proto typing
-Try Solar Energy
\square Simplified Billing System ... in BASIC for the small business
पKilobaud Klassroom . . No. 2: Cates and Flip-flops Ex.
plained Klaster Typesetting an introduction to word pro
cessing Introdu

解 The World's Cheapest Computer . . a $\$ 60$
My Friend is a Computer Junkie

July 1977

Inside the Sphere Microcontroller
The Great TV to CRT Monitor Conversion
\square Computer Turns Director . . an interview with filmmakes John Whitney
The Random Number Game
\square Cassette Interface First Aid . . . use your processor to set timing
\square Understand Your Computer's Language
EKilobaud Klassroom...No. 3: IK Flip-Flops and Clock Logic
Digita
\square Digital Audio ... Part 3: Signal Expansion and Compression
\square It Was Great! ... reviewing The First West Coast Computer Faire
\square Pass the Buck.
computer decision-maker program
\square Inside the Amazing ASR $33 \ldots$ checking out the most
popular termina

August 1977

\square Cassette I/O Format
\square Expand Your SWTP 6800
\square Trigger Your Oscilloscope
\square Sobriety Tester Program
\square Test ICs With Your Micro
\square Heavy Duty Hour Micro
Heavy Duty Altair Power Supply
Elctronic Design Co
\square Understand Your Computer's Language Part 2: Instruc.
tion Sets
Enter the Audible Computer!
Time Bomb Game
OTry a Do-All Program!
\square Sooo, You Want to be an Author!
\square SWTP 4K BASIC Notes . . implementing it on the 680 b
[JHexdec hexadecimal to decimal conversion
1 Start a One-Man Computer Club
Trroubleshoot Your Software a trace program for the 6502

September 1977
IBuild Your Own ASCII Kevboard with serial and parallel output
[]The Ultimate Personal Computer
[JTalk Your Computer's Language
I AA PET For Everv Home a look at the Commodore PI I 2001
IKilobaud Klassroom No \& PC boards and power sup. plies
Seals Electronics
TIry an 8080 Simulator
UBuild a $\$ 20$ EPROM Programmer for the 54024 K chip
TJFaster MIKBUC Load Terhnique uses binary formal ITDecoding Device Control Codes uses a l/ARI. naturally Tarbell Asynchronous Format
()Baseball in BASIC
[JUsing an Invisible PROM how to reloc ate monitor programs
JKlingon Capture Came
Starting a Business?

October 1977

1]BASIC Timing Comparisons
[Hearn and Earn BASIC and business programming
[7Bargain Timel ${ }^{1}$
[]Hello' Today's Program is understanding computer speech recognition
\square Put Your Imsal on the Rack
[]30 Computer Graphics
[]Memory Troubleshooting Tec hnique
ПUnderstand Your Interrupts' real time clock applt-
Cations
[7Kilobaud Klassroom No 5 hardware logical functions
ПDigital Group MAXI-Basic
[lUtilize ASCII Control Codes
CJDedicated Controllers
DTime formin
Build a Universal I/O Board
for your Altar
November 1977
\square Everything about Assemblers' sure beats hand codink \square Your Image Counts
\square Consider a MITE Printer
Tired of a MITE Printeralternative to the ASR-33
\square Stretch Thosstituting Chips?
\square Magnetic Bubble Memory
\square Reliable Conversion Techniques
\square Salesmanship. Hardware and Coffee
\square Hyper about Slow Load Times? KIM Hypertape is an alternative
\square Interested in Commercial Programming?
\square Kilobaud Klassroom No 6 voltage, current and power supplies
Expand Your KIMI with Altair bus devices
DEnhance Your Memory with home information retrieval
Build the $\$ 35$ Modem uses the MC14412 and a UART
\square Another Look at Benchmark Program
Son of Submarine Came
\square Payroll Program for small businessmen
$\square \mathrm{SC} / \mathrm{MP}$ Coes Baudot add an inexpensive TIY

December 1977

-TVT Hardware Design Part 1 instruction decoder and
Expand Your KIMI Part 2 getting to the nuts and bolts \square Payroll Program (Contınued) cassette techniques
The Business Markef
\square ALL CAPS
TThe "Learning Machine" math tutor program
\square Kilobaud Klassroom No 7 transistors, diodes and op amps
\square Compleat Cuide to Logic Diagrams
\square Tiny BASIC
The Twelve Days of Christmas
\square Paper Tape It's Here to Stay a look at the OP-80A \square Tempus Fugit
Here's HUE H Broker?
DHere's HUEY' super calculator for the 6502
Crash Landing a real-tıme Lunar Lander game
DFile Structures simplified

kibboud microcomputing articles you may have missed during '78 \& '79

January 1978

\square Business Applications
\square Growing with KIM ... expansion PC board
-Has Godbout Done It Again?... Econoram II: $\$ 150$
The TRS
The TRS-80: how does it stack up?
A Tale of Four BASICs
Hardware Program Relocation
\square TVT Hardware Design
\square Kilobaud Klassroom... No. 8: pulses - and more pulses
\square Help for Beginning Programmers
Your Imsai and You
-Rocket Pilot . . . an interactive game for the Apple-। \square Micro Maestro
\square Software Keyboard Interface
\square Morrow's I/O Cassette Board
Dit's Your Hobby!
February 1978*

March 1978

\square Build the "Simple Computer" . . . a home-brew 8080 Hardware Program Relocation, Part 2
State Capitals
Customized MIKBUG
Foolproof Cassette Operation
Fooiproof Casselte Opera
Sumber Terminal! . . . interfacing the Burroughs 9350-2 Consumer Computer, Inc.
Programmed Instruction Made Easy: Tiny PILOT, Part 1 Protect Your Memory Against Power Failure Backup Techniques . . . how fail-safe is your system? Small Business Software, Part 2
Expand Your KIM! . . . Part 4: a TTY substitute
Faster Erase Times . . . build a quicker EPROM eraser
DIO Programming for the Altair Disks
The Axiom EX-800
Tiger Trouble! . . . TI programmable-calculator safari
Temperature Sensing
ClA Different Approach to HI-LO

April 1978*

May 1978*
June 1978*
July 1978
UTwo Hobbies: Model Railroading and Computing
Revolving Charge Account Calculations
A Tour of the Faire, Part 2
\square Taming the I/O selectric . . . Part 2: software
Heath's Experimenter's Breadboard
Draw Dazzling Color Graphics . . . routines for Cromem co's Dazzler
Atwood Memory for Your KIM
MIKBUG with Muscle!
\square Little Bits... strings, statements, routines
Cook's Memory Test... for the 8080
\square An S-100 Front Panel Replacement ${ }^{\text {Home-Brew } \mathbf{Z}-80 \text { System ... Part 2: CPU and memory }}$ Home-B
board board
Battleship! tem
Simple and Low-Cost PROM Programmer
Compatibility and the Altair Bus
\square Retail Pricing System

August 1978

\square DOCUFORM: A Word-Processing System for Everyone! DOCUFORM: A Word-Processing System for Everyone!
Kilobaud Klassroom... No. 11: Data and Address Buses Software Debugging for Beginners
Software Debugg
Kansas City Standard
Kansas Ciry Standard. . . at 1200 baud
Two Hobbies: Model Railroading and Computing, Part 2
Update: Lunar Lander
\square The Do-It-Yourself System . . Heath's H8 is a winner
$\mathrm{KIM}+$ Chess $=$ Microchess
\square Is There Intelligent Life in Your Computer Room?
\square From Base to Base... with your HP 25
FINANC: A Home/Small-Business Financial Package
\square Computer-Generated Signs
Copying Computer Casseftes
Something Extra Wi
The Amazing 1802
The Amazing 1802
\square Can't Find It? . . . an index for your SWTP BASIC manual

September 1978

J (Con)text Editor
At Last: A Client Timekeeping System
JTroubleshooters' Guide
Metric-American Conversion Program
The Heath/DEC Connection... Part 1: overview
Home System Demo Program
Do-It-All Expansion Board for KIM
Tally Ho!... fox and hounds game
Baudot Interface Cookbook
Error-Correcting Techniques
KIM Organ
Kilobaud Klassroom... No. 12: ROM and RAM mem ories
Motorola's Latest: The MC6802
TRS-80 Update: Level II BASIC
Super Cheap 2708 Programmer
From Big BASIC to Tiny BASIC
Meca's Alpha-1

October 1978

Budget System . . KIM, keyboard, TV, TVT-6L and AKIM
1 The Heath/DEC Connection... Part 2: H11 system periph erals
Depreciation Calculations
Looping in Tiny BASIC
Kilobaud Klassroom... No. 13: I/O Circuitry
Let Your Computer Wear a Watch
\square Randomness is Wonderful
Dazzler and BASIC
The Latest in Operating Systems for the 6800: FLEX
Action on the Enterprise
Will DEC and IBM Be the Final Winners?
Little Bits
View from the Far East
Use That Parity Line!
\square The Software Patchcord
UA Useful Address List Program
\square Ready for the Nuthouse?
Build a One-Chip Single Stepper for the 6502

November 1978*

December 1978
Duralltel Selectric for Low-Cost Hard Copy
A "Gift" That Keeps on Giving
\square The Art of Generating Expense Reports
\square Deep, Dark Secrets of the TRS-80 (Level I)
\square Interfacing the EIf II
The Care and Feeding of Cassette Tapes, Part 1
\square Raster Scan Graphics for the 6800 . . . Part 2: the software - SWTP 4K RAM Write Protect Option
\square SWTP 4K RAM
\square TSC Text Editor
Spelling Bee
Two Interface Boards from Teletek
\square Attention, Chess Buffs!
Attention, Chess Bufs!
\square BASIC Control of Servomechanisms
\square There Is a Better MIKBUG!
How to Write Good Application Programs
\square Sharing Scheme for RS-232 Channels
\square Scratched Diskette?
January 1979
An Editor for 6800 BASIC Programs
u-Panel for KIM
Rolling Dice
Pseudo Craphics
The BCS and Its President
Address List Editor
Display Your PE T!
TRS-80 Tape Controller
SHHH - People Are Sleeping
SHHH - People Are
Say It with a Banner
Say It with a
Open House
Open House
PET Techniques Explained
A Service Bureau for Hobbyists
Little Bits
Keeping Ma Bell Happy

February 1979

Block-Structured Language for Microcomputers
Kilobaud Klassroom, No. 16: I/O IV
Computerized Climate Control
Music, Maestro!
Madam Dupre's House of the Zodiac
Disk Power!
Inventory Control with the TRS-80
Onward with the COSMAC Elf!
Build a $\$ 50$ TVT!
Percom's LFD-400 Floppy Disk System
DOTS

The Apple Speaks-Sotily
Super Mastermind
TRS-80 Level II Reference Manual Index Care and Feeding of Cassette Tapes (Part 2) Text/Document Preparation Made tasy Simpler Interest
Learn BASIC - with BASIC
Use Flowcharts to Communicate
loystick Interface for Your Altair

March 1979

Cheap Video for Your Heathkit H8
Analog and Digital Interfaces
The "El Cheapo" EPROM Programmer
Is Your Video Monitor Dangerous?
Thoughts on the SWTP Computer System PET User Port Cookbook

Chess Pawn

Home Computer Exterior Ballistics
Heath H9 Page Erase
The SKIP II Microcomputer
Ultra Banner
Teletype's KSR-43
The One Percent Forecasting Method Too Many Variables?
Kilobaud Klassroom No 17. I/O V
The Electric Pencil
How to Talk to Your 8080
Programming the 1802
Keyboard Interrupt for the TRS-80
The OSI Model 500
Sleep Better with a Microcomputer
Telpar Thermal Printer

April 1979

A Look at TRS-80 Peripherals
Heath H8 Disk System
DOTS (Part 2)
Truly Random Numbers
SWTP CT-1024 Mod
Who Sells Sof tware?
How Important Is Proper Termination? How to Talk to Your 8080 (Part 2)
Parallel Port to RS-232 - Inexpensively
Free Speech Lessons for the TRS-80
Let's Go Flying
Floppy Disk System from Tarbell
The Wait State Explaine
Depreciation Analysis
Twin Cassettes for Your TRS-80
Twin Cassettes for Your TRS-80
Bar-Graph Generator
Let's Have Some Order
Quicksort!
Put Something Super in Your Life Starship Attack
Terminate Your Troubles
Testing PET Search Algorithms
Two Diamonds
How about a Printer?
A Look inside the TRS-80
May 1979
A Text Formatter in BASIC
A Text fo
KIMCTR
High-Speed Cassette Interface
How to Talk to Your 8080 (Part 3)
Data Base Management
Analog and Digital Interfaces (Part 2)
COSMAC Double Play
COSMAC Double Play (cont.)
From Microcomputer to Micro-Piano
A Came of Darts
Prettyprinting with Microsoft BASIC
Kilobaud Klassroom No 18
MDOS
A TRS-80 Cross-Index
Graphing with the TRS-80
An Alling-One Interface

June 1979

MRS-80/Selectric Word Processor

Thoughts on the SWTP Computer System (2)
New Life for Our Altair
TVBUG
Creative Tabulation
A Handle on Programming
Keepbook
Vector Graphing Techniques
Putting the 1802 on the S -100 Bus
A Personal Finance System (Part 1)
Buildıng a New Horızon
Microcomputers and TVI
Translating Between TTL and RS- 232 Levels
*issues not available.

A few good reasons why you should buy Instant Software

The Instructions

Easy-to-understand instructions take you from loading and running the program to suggestions for use and care of cassettes.

The Content

It takes a talented team of computer professionals, over 800 associate editors, and the best equipped microlab in the world to weed through the mountain of submitted software and bring you programming that is always topical, up-to-date, and error free.

The Price

Compare for yourself. Instant Software's high-volume sales bring you more programs for your computing dollar than any other brand.

The Selection

With over 300 programs now available for business, home, education, science, and just plain fun, you'll be able to do more with your computer than you ever dreamed possible-and we add more programs to our line every day.

Display package shown above only available when purchased through dealers.

To receive our free catalog, listing over 300 programs in detail, write: INSTANT SOFTWARE, DEPT. ISA5, Peterborough, N.H. 03458

Ask for Instant Software at a computer store near you, or call Toll-Free 1-800-258-5473.

Alabama The Computer Shack 913 Shadyview Lane. Adamsville	Silver Spur Elect. Comm. 13552 Central Ave. Chino	Maryiand The Comm Center 9624 Fi Meade Rd aurel	Computer Corner 200 Hamilton Ave. White Plains	K.A. Elect. 1220 Majesty Dr. Dallas
	The Computer Store820 Broadway, Santa Monica		Computer Factory 485 Lexington Ave. NYC	Radio Shack 1117 Conway, Mission
Computerland of Huntsville 3020 University Or. Huntsville		Massachusetts		
	Coiorado	Computer Packages Unlimited 99 Reservoir St. Holden	Key Electronics	Ram Micro Systems
California	Byte Shop		Schenectady	6353 Camp Bowie Blvd. Ft. Worth
Byte Shop of Mt. View 1063 West El Camino Real, Mt. View	3464 S. Acoma St. Englewood		Ohio	Virginia
	Connecticut	120 Cambridge St. Burlington	Astro Video Electronics	Home Computer Center
Byte Shop of Sacramento 6041 Greenback Ln. Citrus Heights	Bridgeport Computers Inc. 3876 Main St. Bridgeport	Tufts Radio \& Electronics 206 Mystic Ave. Medford	504 E . Main St. Lancaster	2927 Virginıa Beach Blvd. Virginıa Beach Washington
Capital Computer Systems 3396 El Camino Ave. Sacramento	Fiorida	Michigan	18 Hillwyck Dr. Toledo	ersonal Compulers
Computer Components of South Bay 15818 Hawthorne Blvd. Lawndale	AMF Electronics 11146 N. 30th St. Tampa	Computerland of Grand Rapids 2927 28th St. S. E. Kentwood	21 st Century Shop 16 Convention Way, Cincinnatı Oremen	S 104 Freva, Spokane
Computer Components Inc 6791 Westminster Ave. Westminster	Interstate Marketing Fort Lauderdale	Computerland of Rochester 301 S. Liverncis Rochester	Computerland of Portland 12020 SW Main St. Tigard	1301 G. Washington, Richland Wisconsin
Computerland 16720 S. Hawthorne, Lawndale	Sound Ideas 2201.C N.W. 13th Gainesville	Computerland of Southfield 29673 Northwestern Hwy. Southfield	Pennsyivania	Byte Shop Of Milwaukee 6019 West Layton Ave. Greenfield
Computerland of San Francisco 117 Fremont St. San Francisco	Georgia Atlanta Computer Mart Atlanta	Computer Mart 560 W. 14 Mile Rd. Clawson	Artco Elect. 302 Wyoming Ave. Kingston	Canada
Computerland of W. LA 6840 La Cienga Bivd. Englewood		Hobby House 1035 W. Territorial Rd. Battle Creek	Personal Computer Corp. Frazer Mall, Lancaster Ave. Frazer	to55 Yonge St. Suite 208 Toronto. Ontario
I.C.E. House Inc.	Radio Shack 1712 S King St Honolulu	Nebraska	Tennessee	Micro Shack of W. Canada 333 Park Street, Regina. Sask
398 North E. St. San Bernardino Microsun Computer Center 2969 North Main St. Walnut Creek	1712 S. King St. Honolulu Illinois	Omana Computer Store 4540 S. 84th St. Omaha New Mexico	Computerlab 671 S. Menden Hall Rd. Memphis	Otthon Holdings Lid. 12411 Stony Plain Road
OpamprTechnical Books 1033 N. Sycamore Ave. Los Angeles	Computer Station 3659 Nameoki Rd. Granite City Louisiana	South West Computer Center 121 Wyatt Drive, Suite 7. Las Cruces	Computercraft Inc. 3211 Fondren, Houston	Edmonton, Alberta Total Computer Systems Ajax, Ontario
Radio Shack 8250 Mira Mesa Blvd. San Diego	Computer Shoppe finc. 3225 Danny Park Suite 222, Metairie	New York Aristo Craft 314 Fifth Ave. NYC	Computer Port 926 N. Collig. Arlington Interactive Compul rrs 7620 Dashwood Rd. Houston	West Germany Reinhard Nedela Markstr. 3, 7778 Markdort

Other Program Packages From Instant Software

TRS.80*

Level I
Knight's Quest/Robot Chase/Horse Race 16K; Order No. 0003R. \$7.95
Cave Exploring/Yacht/Memory
16K; Order No. 0010R. \$7.95
Car Race/Rat Trap/Antiaircraft 4K; Order No. 0011R. $\$ 7.95$
Status of Homes/Auto Expenses
4K; Order No. 0012R. $\$ 7.95$
Business Package I
4K; Order No. 0013R. \$29.95
Demo I
4K; Order No. 0020R. \$7.95
Destroy All Subs/Bomber/Gunboats
4K; Order No. 0021R. $\$ 7.95$
Personal Finance I
4K; Order No. 0027R. \$7.95
Doodles and Displays I
16K; Order No. 0030R. \$7.95
Space Trek III
4K; Order No. 0031R. \$7.95
Fun Package I
16K; Order No 0037R. \$7.95
Hex Pawn/Shuttle Craft Docking/
Space Chase/Sea Battle
16K; Order No 0041R. \$7.95
Business Package III
4K; Order No. 0061R. \$7.95
Level I and II
Basic and Intermediate Lunar Lander
4K L.I, 16K L.II; Order No. 0001R. \$7.95
Space Trek II
4K L.I, 16K L.II; Order No. 0002R. \$7.95

Backgammon and Keno
4K L.I, 16K L.II; Order No. 0004R. \$7.95
Ham Package I
4K L.I, 16K L.II; Order No. 0007R. \$7.95 Electronics I
4K L.I, 16K L.II; Order No. 0008R. $\$ 7.95$ Golf/Crossout
4K L.I, 16K L.II; Order No. 0009R. \$7.95
Air Flight Simulation
4K L.I, 16K L.II; Order No. 0017R. \$7.95
Oil Tycoon
4K L.I, and L.II; Order No. 0023R. $\$ 7.95$

Bowling

4K L.I, 16K L.II; Order No. 0033R. \$7.95
Santa Paravia and Fiumaccio
4K L.I, 16K L.II; Order No. 0043R. \$7.95

Level II

Model Rocket Analyzer and Pre-flight Check
16K; Order No. 0024R. \$7.95
Ramrom Patrol/Tie Fighter/Klingon
Capture
16K; Order No. 0028R. \$7.95
Space Trek IV
16K; Order No. 0034R. \$7.95
Doodles and Displays II 16K; Order No. 0042R. $\$ 7.95$
Bowling League Statistics System
16K; Order No. 0056R. \$24.95
Cards
16K; Order No. 0063R. \$7.95
Teacher
16K; Order No. 0065R. $\$ 9.95$
Household Accountant
16K; Order No. 0069R. $\$ 7.95$

Get A Software Discount!

Give this coupon to your local Instant Software dealer and get $\$ 1.00$ off the list price of any of our packages. If the store nearest you doesn't stock Instant Software, don't call the manager names-there's still hope. Just show him the coupon, tell him which programs you want, and he'll order the software for you!

Financial Assistant
16K; Order No. 0072R. \$7.95
TRS-80 Utility II
16K; Order No. 0076R. \$7.95
TRS-80 Utility 1
16K; Order No. 0081R. $\$ 7.95$

PET**

Personal Weight Control/Biorhythms 8K; Order No. 0005P. \$7.95
Mortgage with Prepayment Option/Financier 8K; Order No. 0006P. \$7.95 Casino 1
8K; Order No. 0014P. \$7.95
Casino II
8K; Order No. 0015P. \$7.95
Checkers/Baccarat
8K; Order No 0022P. \$7.95
Dow Jone\$
8K; Order No. 0026P. \$7.95
Tangle/Supertrap
8K; Order No. 0029P. \$7.95
Trek-X
8K; Order No. 0032P. \$7.95
Qubic-4/Go-Moku
8K; Order No. 0038P. \$7.95
Mimic
8K; Order No. 0039P. \$7.95
Penny Arcade
8K; Order No. 0044P. \$7.95
Arcade II
8K; Order No. 0045P. \$7.95
Baseball Manager
8K; Order No. 0062P. \$14.95
Dungeon of Death
8K; Order No. 0064P. \$7.95
Arcade I
8K; Order No. 0074P. \$7.95
Digital Clock
8K; Order No. 0083P. \$7.95
Turf and Target
8K; Order No. 0097P. \$7.95

Apple***

Golf
Applesoft II +20 K
Order No. 0018A. \$7.95
Bowling/Trilogy
20K; Order No. 0040A. \$7.95
Math Tutor I
Applesoft II + 24 K
Order No. 0073A. \$7.95
Math Tutor II
Applesoft II + 20K
Order No. 0098A. \$7.95

- A trademark of Tandy Corporation
*A trademark of Commodore Business Machines Inc.
. . A trademark of Apple Computer Inc.
Dealer Inquiries Invited

Joel Holyoak
Electrical Engineering Dept.

Robert Wier

Industrial Engineering Dept.
Computer Science Division
Texas A \& M University
Aggieland Station TX 77843

End Those Terminal Blues

Lear Siegler's ADM-3A may be the answer.

The clean lines of the ADM-3A, shown being used with an SWTP M6800 system. An 80 -character line is greatly appreciated after using terminals with a 32- or 64-character line width.

The Texas A \& M Microcomputer Club recentiy acquired a Lear Siegler ADM-3A display terminal, and somehow we were "volunteered" to assemble it. Upon perusal of the unit, we were impressed by the "Dumb Terminal's" specifications.

- Industry-standard 24×80 character display capability (optional) with lowercase display (optional).
- Full or half duplex/RS-232 or
current loop operation.
- 103/202 compatibie.
- Complete cursor control, including choice of cursor display (underline or block) and home, in addition to direct ($x-y$) placement.
- Scrolling of filled screen display.
- 12 MHz bandwidth monitor.
- Attractive two-tone molded plastic case.
- 59 key solid-state keyboard.
- Choice of 11 baud rates,
switch selectable.
Many of the configuration options are accessible without opening the case by removing the LSI nameplate, which conceals 3 DIP switches. Flexibility is the keyword of the ADM-3A; it may be configured to fit almost any system that requires use of a CRT display. Its price of about $\$ 800$ for the klt, or $\$ 900$ for the assembied version, places it in the Teletype range, but, of course, without the hard-copy or tape capabilities.

Construction

In assembling the ADM-3A from a kit, you will notice the terse construction manual appears to have been written for an experienced electronics technician. Those who are accustomed to Heathkit manuals may be dismayed to read, "install resistors on printed circuit board" type instructions.

However, through the use of numerous diagrams and a method whereby the PC board is broken into five "zones," confusion is kept to a minimum. Since only one zone is to be "stuffed" at a time, constructlon is straightforward with the exception of a few tricky places, which will be outilned
below. You can expect to spend about 20 hours in construction If you haven't prevlously put together an ADM-3A.

Our ADM-3A came with seven pages of revisions to the manual. That sounds like a lot, but is actually less since these included a detailed explanation of construction procedures such as electrolytic capacitor orientation, resistor color code and zone construction techniques.

When the ADM-3A is lifted from its box, you first notice the quality of the packing material. Molded foam about six inches thick is used around the terminal and keeps it from harm during shipping. Parts are separated into hardware, integrated circuits and analog components. The analog components and ICs are packed according to zones to facilitate placement on the PC board.

The case is already assembled and the monitor mounted, which eliminates tedious mechanical work and handiing the CRT. Ali the digital circuitry is contained on one massive 13 x 18 Inch PC board. Sockets are supplied, and, since there are about 140 integrated-circuit chips (depending on selected options), a lot of soldering is involved to mount the sockets (2000 pins, more or less).

Proceed through the manual. By the time you have installed the heat sinks, power-supply filter capacitors and keyboard, the PC board will be quite heavy. When turning it over to solder components, be careful not to place too much strain on It to avoid causing cracks in the foil traces.

After installing the board, check the voitages (as the manual advises). If they are correct, plug in the iCs and the monitor, and give it the smoke test. Our experience indicates that more caution is needed. We recommend the following sequence.

1. Test and make sure that the $+5,+12,+15$ and -12 volt regulators are working.
2. Turn off the unit.
3. Install ICs on the PC board. Be particularly careful not to
mix the 74LS157s and the 74LS75s. A good idea is to make several checks of the IC positions several hours apart, or ask a friend to verify the placement. (Note that there is an error on the PC board at IC location J 5 . The printing specifies a 74LS03. This should be a 74LS08 and is correctly marked in Fig. 3 in the assembly manual.)
4. Connect P3, P4, P5, but not P7.
5. Apply power. Buy, beg or borrow an oscilloscope to check $\mathrm{J7}$ pins 8 and 9 for horizontal and vertical drive on the main PC board (timing diagrams in the manual show approximately what these signals should be). This is necessary and critical since this monitor does not "free run" if no drive is applied; should the horizontal drive be absent, components in the horizontal deflection clrcult, especially the drive transistor, can be burned out from excessive current flow.
6. If the horizontal and vertical drive are present, remove power and plug in P7, making sure it is seated properly.
7. Apply power and, with luck, your monitor should display characters when the keyboard is depressed.

Most of our problems occurred with the monitor, not with the digital circuitry itself. In addition to a blown horizontal drive transistor, the display was much too wide, and width coil L6 had little effect. A leaky 50 uF electrolytic capacitor was replaced on the monitor PC board, and we had a display.
We discovered that the schematic included with the documentation omitted some details on the monitor power-supply routing (it should be noted that the monitor is not manufactured by LSI, but is purchased and installed preassembled in the terminal). The schematic failed to show that the 15 volt power-supply lead enters the monltor board through connector J 7 pin 7 , and is routed through a 2 A Picofuse. It is always nice to know where the fuses are In a unit, should they ever blow out!

Our single remaining problem was that the characters typed on the keyboard seemed to have bit 5 inverted. After some time, we traced the problem to the "fill" switch located one-third of the way back on the right side. This provides an ability to fill the memory with zeros instead of blanks, but the only mention of it is in the detailed circuit descriptions associated with the schematic drawings. We had inadvertently set this switch during construction. So, if you get zeros instead of blanks when the space bar is depressed, flip it and you'll get the appropriate spaces.

User Comments

The quality of, the terminal is soon evident. The keyboard has a positive, solid feel, with none of the mushiness associated with some cheaper keyboards. The screen intensity is adjustable and may be set appropriate to the room illumination. The characters are crisp and possess very high contrast. Even in a darkened room, there is no evidence of a background raster scan with the intensity fully advanced. Limited graphics are possible with the direct cursor positioning featureand a LIFE game on it is quite impressive.

The keyboard may be locked out of the system to prevent interference (from cassette interface or when the system is doing teleprocessing) with data transfers through the terminal. Note, however, that the UART clock is not easily accessible, so cassette systems using a recovered clock may require some modification to the ADM-3A.

The 80-character line width is refreshing after a struggle to fit output into a 32- or 40-character width limitation.

The ADM-3A differs from the previous ADM-3 in that direct cursor addressing is possible, and 74LS-type TTL chips are used throughout, which results in fewer power-supply regulators and, thus, less heat generated and lower power consumed. The ADM-3A also is built around a higher-quality PC board. In our previous dealings

The ADM-3A with clamshell case open to reveal the single major PC board. The keyboard and power supply with heat sinks mount directly onto the main board. Note at the left of the keyboard the option switches, which are accessible with the case closed. The monitor comes preassembled and mounted in the top of the shell, and connection is made to the main board via one plug and cable assembly.
with the ADM-3, we found that, in some cases, a few platedthrough holes were not completely plated.
In addition, the ADM-3A connection to the video monitor board is better placed. Past experience with the ADM-3 has shown that the plug connecting the monitor to the control logic routes the connecting wires too close to the flyback assembly. The result is a picture that does not have good vertical stability (it rolls). The ADM-3A eliminates this problem by better
placement of the plug.

Conclusion

The ADM-3A could be considered the "Rolls Royce" terminal of the computer hobbyist market. It is a professional terminal with advanced features making it quite suitable for any serial data, outboard peripheral application the hobbyist may be contemplating. It is compact, lightweight and consumes little power. For those wishing to go first class, the ADM-3A is clearly a good choice.

PERGOM SAMPIER

For your SS-50 bus computer - the CIS-30+

- Interface to data terminal and two cassette recorders with a unit only $1 / 10$ the size of SWTP's AC-30.
- Select 30,60 , or 120 bytes per second cassette interfacing, 300, 600 or 1200 baud data terminal interfacing.
- Optional mod kits make CIS-30+ work with any microcomputer. (For MITS 680b, ask for Tech Memo TM-CIS-$30+$-09.)
- KC-Standard/Bi-Phase-M (double frequency) cassette data encoding. Dependable self-clocking operation.
- Ordinary functions may be accomplished with 6800 Mikbug $^{\text {TM }}$ monitor.
- Prices: Kit, \$79.95; Assembled, \$99.95.
Prices include a comprehensive instruction manual. Also available: Test Cassette, Remote Control Kit (for program control of recorders), IC Socket Kit, MITS 680b mod documentation, Universal Adaptor Kit (converts $\mathrm{ClS}-30+$ for use with any computer). MIKBUG ${ }^{\oplus}$ Motorola, inc.

In the Product Development

 Queue . .Coming PDO. Watch for announcements.
6809 Processor Card - With this SS-50 bus PC board, you'll be able to upgrade with the microprocessor that Motorola designers describe as the "best 8 -bit machine so far made by humans."
The Electric Crayon ${ }^{\text {TM }}$ - This color graphics system includes its own $\mu \mathrm{P}$ and interfaces to virtually any microcomputer with a parallel I/O port.
Printer Interface - For your TRS-80 ${ }^{\text {TM }}$. Interface any serial RS232 printer to your TRS-80 ${ }^{\text {TM }}$ with this system.

TMELECTRIC WINDOW, ELECTRIC CRAYON, Pilon30 and Pilon-10 are trademarks of Percom Data Company. Inc.
TRS-80 is a trademark of Tandy Corporation and Radio TRS-80 is a trademark of Tandy Corporation and Radio
Shack which has no relationship to Percom Data Company.

Orders may be paid by check or money order, or charged to Visa or Master Charge credit account. Texas residents must add 5% sales tax.

CASSETTE SOFTWARE

For 8080/2-80 μ CS . . .
BASIC ETC - Developed by the coauthors of the original Tiny BASIC, BASIC ETC is easy to use yet includes commands and functions required for powerful business and scientific programs as well as for hobby applications. 9.5 K bytes of RAM. 1200-baud cassette and 42-page user's manual $\$ 35.00$
Cassette Operating System - EPROM (2708) COS for the Percom Cl-812 dual peripheral interfacing PC card . . $\$ 39.95$
If you're programming on a $6800 \mu \mathrm{C}$, you'll want these development and debugging programs written by Ed Smith of the Software Works:
Disassembler/Source Generator - Disassembles SWTP Resident Assembler, TSC Mnemonic Assembler/Text Editor or Smoke Signal Mnemonic Assembler/Text Editor and produces compacted source code suitable for re-editing. Prints or displays full assembly-type output listing. 4 K bytes of RAM.
(Order M68SG)
$\$ 25.00$
Disassembler/Trace - Use to examine (or examine and execute) any area of RAM or ROM. "Software-single-step" through any program, change the contents of CPU or memory location at any time, trace subroutines to any depth. 2.3 K bytes of RAM.
(Order M68DT)
$\$ 20.00$
EPROM Support/Relocator Program This program relocates a program in any contiguous area of RAM or ROM to anywhere in RAM. Use to assemble and test programs in RAM, adjust programs for EPROM operating addresses and then block move to your EPROM burner address. 952 bytes of RAM. Loads at hex 1000.
(Order M68EP)
$\$ 20.00$
Relocating Assembler \& Linking Loader (M68AS)
$\$ 50.00$
Relocating Disassembler \& Segmented Source Text Generator (M68RS) \$35.00

Americana Plus - 14 tunes for the Newtech Model 68 Music Board in machine language ready to load and run. Cassette compatible with Percom CIS-30+ and SWTP AC-30. Order MC-1SW . . $\$ 15.95$

HARDWARE

Newtech Model 68 Music Board - Produces melodies, rhythms, sound effects, morse code, etc. from your programs. Includes manual with BASIC for writing music scores and assembly language routine to play them. Installs in SWTP I/0 slot. Assembled \& tested
$\$ 59.95$
The Percom Electric windowim -Memory-resident and programmable, this video display character generator board for your SS-50 bus displays up to 2480 -character lines. Features dual character generators, dual-intensity high-lighting. One programmable register controls scrolling. Compatible with standard video monitors
SS-50 Prototype Cards:
Large card (up to 7040 -pin ICs) $\$ 24.95$ 1/0 size card
$\$ 14.95$

PERCOM ${ }^{\text {TM }}$ 'peripherals for personal computing'
PERCOM DATA COMPANY, INC. - -P59
211 N. KIRBY • GARLAND, TX. 75042

To order products or request additional literature, call Percom's toll-free number: 1-800-527-1592. For detail technical information call (214) 272-3421.

For your SWTP 6800 Computer . . . PERCOM's ${ }^{\text {TM }}$
FLOPPY DISK SYSTEM [『" 400

Ready to plug in and run the moment you receive it. Nothing else to buy, no extra memory. No "booting" with PerCom MINIDOS-PLUSX", the remarkable disk operating system on EPROM. Expandable to either two or three drives. Outstanding operating, utility and application programs.

For the low $\$ 599.95$ price, you not only get the disk drive, drive power supply, SS-50 bus controller/interface card, and MINIDOS-PLUSX"', you also receive:

- an attractive metal enclosure • a fully assembled and tested interconnecting cable • a 70 -page instruction manual that includes operating instructions, schematics, service procedures and a complete listing of MINIDOS ${ }^{\text {r" }} \bullet$ technical memo updates - helpful hints which supplement the manual instructions - a 90 -day limited warranty.

SOFTWARE FOR THE LFD-400 SYSTEM

Disk operating and file management systems

INDEX ${ }^{\text {º }}$ The most advanced disk operating and file management system available for the 6800. INterrupt Driven EXecutive operating system features file-and-device-independent, queue-buffered character stream I/O. Linked-file disk architecture, with automatic file creation and allocation for ASCII and binary files, supports sequential and semi-random access disk files. Multi-level file name directory includes name, extension, version, protection and date. Requires 8 K RAM at $\$$ A000. Diskette includes numerous utilities.
. $\$ 99.95$
BASIC Interpreters and Compilers
SUPER BASIC A 10K extended disk BASIC interpreter for the 6800. Faster than SWTP BASIC. Handles data files. Programs may be prepared using a text editor described below $\$ 49.95$ BASIC BANDAID ${ }^{\text {™ }}$ Turn SWTP 8K BASIC into a random access data file disk BASIC. Includes many speed improvements, and program disk CHAINing
\$17.95 STRUBAL + TMA STRUctured BAsic Language compiler for the professional programmer. 14-digit floating point, strings, scientific functions, 2-dimensional arrays. Requires 20K RAM and Linkage Editor (see below). Use of the following text editors to prepare programs. Complete with RUN-TIME and FLOATING POINT packages $\$ 249.95$

Text Editors and Processors

EDIT68 Hemenway Associates' powerful disk-based text editor. May be used to create programs and data files. Supports MACROS which perform complex, repetitive editing functions. Permits text files larger than available RAM to be created and edited.
\$39.95
TOUCHUPrw Modifies TSC's Text Editor and Text Processor for PerCom disk operation. ROLL function permits text files larger than available RAM to be created and edited. Supplied on diskette complete with source listing

Assemblers

PerCom 6800 SYMBOLIC ASSEMBLER Specify assembly options at time of assembly with this symbolic assembler. Source listing on diskette
\$29.95
MACRO-RELOCATING ASSEMBLER Hemenway Associates' assembler for the programming professional. Generates relocatable linking object code. Supports MACROS. Permits conditional assembly .
$\$ 79.95$
LINKAGE EDITOR - for STRUBAL + ${ }^{\mathrm{TM}}$ and the MACRO-Relocating assembler . $\$ 49.95$ CROSS REFERENCE Utility program that produces a crossreference listing of an input source listing file
\$29.95

Business Applications

GENERAL LEDGER SYSTEM Accommodates up to 250 accounts. Financial information immediately available - no sorting required. Audit trail information permits tracking from GL record data back to source document. User defines account numbers \$199.95 FULL FUNCTION MAILING LIST 700 addresses per diskette. Powerful search, sort, create and update capability \$99.95 PERCOM FINDER ${ }^{\text {™ }}$ General purpose information retrieval system and data base manager .
\$99.95
rw trademark of PERCOM Data Company, Inc
tM trademark of Hemenway Associates Company.
Now! The LFD-800 and LFD-1000. Add one, two or three LFD-800 drives and store 200K bytes per drive on-line. Add one or two (dual-drive) LFD-1000 units and store 800 K bytes per unit on-line. Complete with interface/controller, DOS, cable \& manuals. Two-drive systems: LFD-800 - \$1549; LFD-1000 - \$2495.
-pse PERCOM 'peripherals for personal computing'

Off-the-Shelf Word-Processing System

Abstract

This system is almost comparable to one made by an office-machine company. The big difference is that you'll only pay about one-half as much to put this one together yourself.

1write a model-train newsletter. It usually has 20 pages, quite a few pictures and is off-set-printed for quality. I wanted good-looking camera-ready copy that I could produce myself. Since my typing skill isn't all that great, I found that I was spending far too much time trying to get the typewriter to do what my mind said, rather than what my fingers told it.
Many newsletter articles come in longhand from contributers, which requires typing
a first draft, making revisions and sending it to them for approval. There are often several changes along the way before they and my proofreader can all agree it is ready for the printer. The word-processing systems seemed to be an answer to my problem. The more I read the ads in magazines and talked to people in computer stores, the more I became convinced that it might be the way for me to go.
With the help of Proko Electronics, 437 Marsh St., San Luis

I write a model-train newsletter. It usually has 20 pages, quite a few pictures and is offset printed for quality. I wanted good-looking camera-ready copy that I could produce myself. Since my typing skill isn't all that great, I found that I was spending far too much time trying to get the typewriter to do what my mind said, rather than what my fingers told it.

Many newsletter articles come in longhand from contributers, which requires typing a first draft, making revisions and sending it to them for approval. There are often several changes along the way before they and my proofreader can all agree it is ready for the printer.

Fig. 1. Sample text.

Obispo CA 93401, I came up with a word processor of off-the-shelf components. It costs about half the price of a unit by the office-machine companies . . . about $\$ 6500$, as opposed to about $\$ 13,000$. That is still expensive, but it is a tool to increase productivity just as much as, say, a metal-turning lathe. It allows the operator to do a precision job in a fraction of the time that it takes the old way. Since a nontechnical article such as this would have helped me along the way, I thought I'd share some of my experiences.

If some of the print-quality features that I wanted for my application were left out, you could put a system together for about $\$ 4000$. It would still be usable for many other computing tasks, such as inventory control, accounts and printing mailing labels.

Selecting the System

I had hoped to come up with a low-cost tape cassette storage system, but the more I chatted with people who had tried to use tape recorders, the more the convenience and speed of a disk system figured into my plans. Quality tape drives might have done it, but their cost came close to the cost of disk drives. So, I settled for a disk drive system.
The mini-floppy disks are 5 inch diameter plastic, coated with recording material similar to that used on the tapes. They
are mounted in a heavy paper cover with some openings. The disk stays in the cover and is spun by the drive within the cover. The disk can be searched for the wanted material in a fraction of a second, while the tape recorders work at rewind speed.

My system is working great now, and this article is being composed on it. The text in Fig. 1 was printed on my machine. The right-hand margin is straight (justified), and columns can be any width need-ed-from 25 to 125 characters per line.

The key to the whole system is the Electric Pencil Il program written and sold by Michael Shrayer Software (1253 Vista Superba Dr., Glendale CA 91205). This program requires the use of another software disk, CP/M by Digital Research, Inc. There are also versions of the Electric Pencil for similar software such as Imsai's DOSA and Cromemco's C-DOS.

CPIM and Electric Pencil are available on North Star disks, as are other programs that I felt I might be able to use, such as one for printing mailing labels. That tied down the computer selection for me, since a North Star Horizon II would give me the needed dual disk drives. The CP/M disk and a working copy of the Electric Pencil disk have to be in place while you use the system. There is room to store about 12,000 words of text on a single-side disk along
with the Pencil program.
Since I purchased my system, North Star has switched to double-density disks at no increase in cost, so you get a break there and greater storage. I am using 32 K of memory, which lets me have about 3100 words of text to work with before I have to store it on a disk. This is working out OK for the short articles; if I were writing a novel or longer articles, then a third 16 K memory board could be added. This would double the number of words that could be worked with before storing them on a disk, since the programs themselves take up about 16 K of memory. I soon learned, however, to save on the disk as I went along.

The Electric Pencil II program requires a memorymapped video interface, such as the Solid State Music VB1B board. This means that an intelligent terminal isn't needed. In my case l use the keyboard of the NEC (Nippon Electric Co.) Spinwriter as the input device. I am using a 17 inch monitor since it is about 30 inches from my eyes. This makes the words quite readable during long sessions. Dot matrix printers are less expensive than the impact types, but 1 needed goodquality copy and to be able to change font styles.

My choice of the NEC Spinwriter over a Diablo 1620 was more a matter of availability. The NEC unit uses an interchangeable print thimble rather than the daisy wheel of the Diablo or the ball of the Selectric. It prints at about 450 wpm (55 cps). It can also be used as a typewriter, independent of the computer. I have been completely satisfied with the Spinwriter and have had no experience with a Diablo, so 1 can't really make a comparison, although the units appear quite similar and appear to be equal in quality.
The Selectric is less expensive, even with the extra keyboard that is needed with some Selectric conversions. For right-hand justification with the Selectric, the space between words is increased, while with

The North Star Horizon II computer, the 17 inch monitor and the NEC Spinwriter. They are mounted on a custom desk with the Spinwriter set at a 30° angle for easier viewing of the monitor.
the Spinwriter and the Diablo, the space between letters is also changed by using the 120 positions per inch available. I felt that that feature was worth the extra expense for my application.
There is also a conversion of the Spinwriter called the Spinterm. This has the added feature of proportional spacing. A special print thimble is used, and an i takes up less space than a w does, giving an even more professional look to your copy. This unit had just been announced when I bought my system; delivery was uncertain at that time, and only one type style was available.

Using the Word Processor

When you shut the system down there is a possibility of a stray voltage, wiping out data stored on the disks, so remove the two disks before shutting down. Therefore, the first thing to do is place a working copy of the CP/M disk in the left-hand disk drive and an Electric Pencil disk in the " B " disk drive. With the power on, the first disk drive comes on and reads the disk, and the CP/M "signs on" the screen. After you type in " $\mathrm{B}: \mathrm{PENCIL}$," the second disk is read and the Pencil program "signs on." Push the Escape
key to clear the screen, and you are ready to start typing.
The words will appear on the screen. When you get to the end of the first line, resist the urge to hit the carriage return. Just keep on typing and the next line will start to fill. The cursor runs just ahead of the words to let you know where you are working on the screen. The cursor can be moved about on the screen to make corrections.

By holding down the control key and then pressing A, the cursor will move back one letter, and you can then retype that letter to change it. Pressing A several times will move it a letter at a time; S moves it ahead, while W moves it up a line and Z moves it down a line. These four letters form a diamond on the left end of the keyboard and provide simple control of the cursor position. In addition, pressing Q will move the cursor to the top left corner of the screen, and the Tab key will jump it across the line, eight spaces at a leap. The return key moves it to the left margin of the line it is on. That is why it is important not to hit the return key as you do with a regular typewriter, because you will then be typing over the line you just typed. Doing that a few
times will be a strong reminder!
There are additional keys that let you delete a letter at a time - to the end of the line or a complete line. Another control lets you insert one letter or a full paragraph, and the existing text just moves on ahead of it as you go. It is fascinating to watch the words shift around on the screen as you add or take out part of what you have written. Another set of controls lets you shift anything from a word to a group of paragraphs from one part of the text to another.

Before I used this system, my rough drafts were full of arrows pointing here and there and blocks of words circled and coded for another part of the text. Now I can make all those changes as I go along and see if that is really what I want. I can try several changes until I am satisfied with the results.

I have found it easy to work with and use it for correspondence as well. Also, for answering routine inquiries about my newsletter, I have a half dozen form letters stored on a disk. I simply add the correct date and name to the appropriate letter, make a change here and there to suit the particular inquiry and print it out at 450 words a minute.

To store what you have written on a disk for later use, place the cursor at the beginning of the text and use the control key and K. This brings up a sub ${ }^{2}$ system on the screen. It will tell you how many words are in the text and gives the codes to use. You will need a file name for the text to be saved. This can be any combination of up to eight characters, as long as it doesn't start with a number. For instance, APRNL3 could be used for the third article for the APRil NewsLetter. I have stored this article as WORD. Don't use the same name for two files on the same disk, or the new one will erase the first one, which can't be recovered.

To store or save the text, type in S WORD 2 and press the return key. After the disk starts
start up the session with a copy of Electric Pencil that has no files stored on it and then shift to the working disk. If a half-full disk is used for start-up, then later even an empty disk will give a "Disk Full" signal when I try to save material.

One other problem: If the new disk isn't seated just right and you try to store the text, you will get a disk error signal, which will take you out of the Electric Pencil program. I haven't found a satisfactory way to get back in again and have lost several hours of typing as a result.

To avoid this problem, I am careful about inserting the disk and have the disk that I am going to use for storage in place before I start typing. Also, when I first put the disk in place I use the control key and K to bring

[^3]Table 1. System components.
up, "Verifying Text" will come on the screen, followed by the list of files on that disk, including the new file, and the deed is done. If you are working with a long text, it is a good idea to save what you have done every 15 minutes or so. Then if the power goes off or if you leave the room and a "help. er" comes along, all is not lost.
With the dual disk drive system it is simple to make copies of existing disks. It takes less than a minute. By using copies and keeping the original disk in a safe place, you always have a backup in case you goof. You will need quite a few working copies of the Electric Pencil disks since your text is stored on these disks, rather than on a blank disk.

Restrictions

Because of a quirk in the system (which, I understand, is being changed now), I have to
up the subsystem and then use D to get a list of the file names on that disk. This does two things: It confirms that I have the disk that I want and it also runs the disk briefly so that I know it is positioned properly. Then it will be ready to store the text later on.

Program Features

When you are ready to type out the text, you call up the printing subsystem with the control and P keys. The print format is normally set for a full page with right-hand justified margins. This can be changed by simply typing in new commands for line length, page length, left margin and nonjustify. The text can be doublespaced, and there is a feature that will add a title and automatic page number to each sheet.
Part of the printing format is determined as you originally type the text. For this article I
used a line feed between each paragraph and didn't indent the first line. Any indenting must be done in the text, and the Tab key will do that for you. Columns are also determined in the text.
If you don't use rolls of paper with your machine, then the printing command F1 will stop the machine at the end of the sheet and wait for you to change paper. Pushing the return key will start it printing the next page. Print commands can also be placed in the text itself and can then make that paragraph narrower or doublespaced or whatever fits your needs.

If you want to work with text that you saved earlier, then put that disk in the second disk drive and again ask for the directory of that disk to check that it is the right disk and that it is seated properly. Then typing L WORD 2 will load the text into the memory of the computer. The Escape key will bring it up on the screen. There are controls to have the text scroll up or down on the screen at various speeds, and a touch of the space bar will stop and start the scrolling.

There is another fascinating feature of the Electric Pencil program: the string search. A string is usually a word that you are hunting for, but it can be any combination of characters that you want to find. The control and V keys bring this feature into use, and the screen will display Search String? If you type in any string of characters such as memory and hit the return key, it will display the first line of text that contains that word. Control C will bring up each succeeding time it is there.

I find this feature convenient to find the words that my proofreader says need changing. It would be invaluable if the text that you were working with had to have an index.
This feature can also be used in another way. If you type in, say, "company/corporation," then the word company will be changed to corporation throughout the text, and the screen might display "Located 'com-
pany' 23 times." If you find that you have misspelled a word consistently, this feature could be used to find and change it thoughout the text. . . and in a fraction of a second!

Related Reading

The manual that comes with the Electric Pencil II is well done and easy to understand. I have made simple notes on $31 / 2$ $\times 5$ inch cards for the various commands, but after the first few days of use, I seldom needed to refer to them. The Horizon II is available as a kit, and the instructions for that are quite complete. If you have put other electronic kits together, you should have no problem with the computer.
Someone else at North Star must have written the instructions for the DOS (disk operating system) and their version of BASIC that came with my unit. If you fully understand computers, no doubt they will be quite adequate. There is an expanded and easier-to-understand System Software Manual with the new double-density Horizon models. The manual goes into the steps needed to personalize the disks to suit your particular system. If you are a novice, you may still find that this is best left to your friendly computer store.

If you want to take full advantage of your system for more than word processing, then you will need to know how to work with BASIC in general, and the North Star version in particular. Luckily, there is help in understanding how to operate the computer with BASIC. Robert Rogers went through the agony of learning to use his new computer from scratch and has written, in non-computer talk, a book, The Users Guide to North Star BASIC, published by In teractive Computers, 7620 Dashwood, Houston TX 77036. It is based on his experiences with a single disk North Star unit used with his SOL-20 computer. Some of what he talks about doesn't apply to my system, but there are enough plaintalk explanations to make the book well worth the cost for a novice.

no loose ends All-In-One: computer, floppy, I/O, 16K RAM. ${ }^{\$ 1595^{*}}$

New Heathkit ${ }^{*}$ H89
 All-In-One Computer

Heath takes the risk out of selecting a balanced computer system. Now, video terminal, floppy, keyboard and 8 -bit computer are brought together in one self-contained, compact unit. Nothing hangs out.

Two Z80's

The personal computer has never been simpler. Or smarter. Two Z80 microprocessors mean terminal never shares power with computer, as do most desk-top units. So this terminal is capable of a multitude of high-speed functions, all controllable by keyboard or software.

102K bytes storage

Built-in floppy disk system gives you fast access to programs and data. Each $51 / 4$ inch diskette has more than 102 K bytes of storage area, enough to hold entire files. The All-In-One comes with 16 K RAM, expandable to 48 K .

Hundreds of uses at home or work

The All-In-One Computer runs programs written in MICROSOFT ${ }^{\text {mu }}$ BASIC and ASSEMBLER Languages. And it accepts all current software written for the popular Heathkit H8 computer. You can choose from scores of practical programs for home and business.

Learn by building

What better way to learn about computers than to build one yourself? The All-In-One is available in easy-to-build kit form, as well as completely assembled. Like all Heath electronic kits, it comes to you with its own easy-to-follow assembly manual and a nationwide network of service centers to assure smooth sailing.

FREE CATALOG

For complete details on the Heathkit H89 All-In-One Computer and nearly 400 other electronic kits for your home, work or pleasure, send today for the latest Heathkit Catalog of values.

- $\$ 1195$ without floppy. Mail order kit price, F.O.B. Benton Harbor, MI. Also available at Heathkit Electronic Centers at slightly higher prices. Prices subject to change without notice.

Catching Bugs with Lights

This hardware approach to software debugging could save you many headaches.

!
In debugging a program, how often have you wished you could see the contents of the accumulator or the status register at each step without pushing all those buttons? If you are interested in a simple hardware solution to this problem, read on.

Although my circuit was designed for the KIM-1, the idea certainly is applicable to other systems. Even if you're not interested in my Bug-Light circuit for programming purposes, it gives you one or more output ports in
page zero of memory, and it makes a useful tool for teaching programming.

Introduction

The KIM-1 monitor and a little hardware provide you with a single-step mode in which the program may be executed one instruction at a time. After each instruction is executed, the resident monitor program stores the contents of the accumulator, the status register, X -register, Y-register and other registers
(see Table 1 for the locations of each register). The important registers are also saved in zero page when a break (BRK) command is placed in a program and the IRQ vector is 1000 . Both the single-step (SST) mode and the break-to-KIM monitor are used extensively in debugging programs.
Use of the SST mode is explained in the KIM-1 User Manual, while the break-to-KIMmonitor technique is explained in The First Book of KIM. With

either technique the contents of the various registers may be read by using the keyboard to look up the locations in zero page where their contents are stored. For example, to see what the contents of the accumulator are after an instruction, simply address location 00F3 with the keyboard to display it on the seven-segment display.
It's a great feature, but it's slow. At least six consecutive key depressions must take place to examine a register, restore the program counter and execute the next instruction in the program. If you're following your program around some crazy loop to see why it never comes out, this procedure can take a lot of time. Perhaps my arthritic fingers and bouncy keys are the problem. There has to be a faster approach to the register display problem. A reasonable objective, I decided, was an LED display of each bit in a particular register, with no extra key depressions.

Enter Bug-Lights

To accomplish this objective I designed a circuit to decode the addresses of the locations where the various register contents were stored and allow the microprocessor to WRITE the same data to output ports with LEDs to represent each bit. Thus, when the monitor stores the contents of the status register at location 00F1, it also writes the same data to an output port whose address is 00F1. In this case the LEDs indicate the state of the various flags. If

Fig. 1. The basic Bug-Light circuit.
the output port has address OOF3, then the LEDs will show the contents of the accumulator, in binary, of course.

Bug-Lights comes in three versions. The basic circuit is shown in Fig. 1. It will display one register only. A modification that increases the utility of the basic circuit is shown in Fig. 2. The DIP switch allows you to select which register you want to follow as you step through your program. If you really like blinking lights and/or do a lot of programming, see the chromeplated modification to display up to eight registers simultaneously as outlined in Fig. 3.

Of course, the most important registers to display are the accumulator, the status register, the X and Y registers and perhaps the stack pointer. These displays would make an impressive yet functional front panel. My personal version has the DIP switch modification shown in Fig. 2. (The program counter low, PCL, is stored at address OOEF and cannot be observed with the Bug-Light circuit. I cannot recall ever using this register to debug a program.)

How Bug-Lights Works

We will begin with the address decoding circuitry. The 74LS138 decoder/demultiplexer will decode the lowest three address lines (A0, A1, A2) when G1 is at logic 1 and G2A and G2B are at logic 0 . G1 is tied high, eliminating any further consideration of it.

In order to have both G2A and B at logic 0 , the $\overline{K 0}$ select from the KIM-1 and the output of the 74LS30 must be at logic 0 . K0 will be low when address lines A10-15 are low. This is handled by the KIM-1 circuitry. You can see from Fig. 1 that the output of the 74LS30 is low when A4-A7 are at logic 1 and A3, A8 and A9 are at logic 0 . The compilation of this information as the requirements to select the 74LS138 are shown in Example 1.

The 74LS138 decodes the low. est three address lines to produce active low device select pulses whenever addresses 00F0-00F7 are on the address lines. Each of the eight outputs of the 74LS138 corresponds to one of the eight addresses 00F0-00F7, which in turn include the address of the locations where the various registers are stored.
The device select pulse from the 74LS138 is inverted and ANDed with the inverted RAMR/W signal from the KIM-1. This produces a positive pulse from the 74LS02, which occurs only on a WRITE cycle and when the correct address is placed on the address bus. For example, an STA 00F1 instruction will produce such a pulse in the circuit of Fig. 1. This pulse Is applied to the gate inputs of the 74LS75 Bistable Latches.

As long as the positive pulse is applied to the 75LS75 gates, the Q outputs follow the D inputs, and the \bar{Q} outputs are the D inputs inverted. At the trailing edge of the positive pulse,

Address Label		Contents
OOEF	PCL	Program Counter Low
00F0	PCH	Program Counter High
OOF1	P	Status Register (Flags)
OOF2	SP	Stack Pointer
OOF3	A	Accumulator
00F4	Y	Y-Register
00F5	X	X-Register
00F6	CHKHI	Cassette Checksum High
00F7	CHKSUM	Cassette Checksum Low

Table 1. Zero Page Memory locations of the various registers.

Fig. 2. Use of a DIP switch to select the register to be displayed.
which occurs when the 02 clock signal on the KIM-1 changes from logic 1 to logic 0 , the data at the D inputs is latched into the Q outputs. So when a WRITE occurs to 00F1, the data will appear at the Q outputs and it will be stored there, at least until another WRITE to O0F1 occurs.
The 81 LS 97 is a data bus buffer. It is activated only on a WRITE command when the R/W is low. If only one output port is desired and the data bus lines are kept short, then the 81LS97 may be omitted since the 6502 microprocessor can drive the 74LS75s directly. However, if you want to locate your lights on a front panel, or if you want to add sets of eight lights for several registers, then the bus
driver becomes essential.
The LEDs are connected through current-limiting resistors to the \bar{Q} outputs of the 74LS75s. They will glow when \bar{Q} is low and Q is high. Thus a glowing LED corresponds to a logic 1 for the bit it represents while an LED in the off state corresponds to a logic 0 .

Bug-Lights, Output Ports or Both

An added feature of the BugLight circuit is its ability to be used as an output port as well as a debugging tool. The Q outputs of the 74LS75s are not used for display purposes, and they contain the data that was written to them. Thus, they can be used as zero-page, memory-

Fig. 3. Circuit of Fig. 1 expanded to output several registers simultaneously. Each pair of 74LS75s makes one 8-bit output port. Port selects are from the 74LS138 decoder.

How to buy IBM Selectric Terminals.

Western I/O presents expertly refurbished, heavy-duty, IBM Selectrics. Two varieties-both capable of providing years of service as typewriters, but with a unique difference: they're also computer terminals. Similar, yet usable in diverse applications.

The Communications Terminal

Based on the highly-respected, IBM I/O Selectric, it incorporates standard typewriter features plus a standard computer terminal, all integrated within the Selectric housing. You just plug it into 115 Vac and connect it to your system's RS-232C connector with the cable provided and it's ready to use. Quick. Convenient. With that great IBM feel of quality. The look competitors have been trying for for years.

The Printer Terminal

IBM Selectrics are known for their well-defined, high-quality printed characters and easy-tochange elements. An ideal choice for text processing, highly-legible source listings and personal or business correspondence. And it's easy to connect to home or business computer.

Just plug in 115 Vac, hook up the ASCII printer port and let 'er go.

Both terminals are maintainable by you or any qualified service using the complete documentation provided. Or you can return it to us if you so choose. Both carry a 30-day warranty on the complete unit, 90-days on the electronics.

Kits, too

Everything you need to connect your present I/O Selectric to home or business computer is provided in our easy-to-install Communications Terminal or Printer Terminal Kits. Both provide the same great features found in our standard terminals. The only difference is you provide the installation.

$\begin{array}{r} \mathrm{A} 15 \\ 0 \end{array}$	$\begin{array}{r} \text { A14 } \\ 0 \end{array}$	$\begin{array}{r} A 13 \\ 0 \\ 0 \end{array}$		A11	A10	A9	A8	A7 AE
								Example
		Integrated Circuit				$+5 \mathrm{~V}$		Ground
		74LS138				16		8
		74LS30				14		7
		74LS02				14		7
		74LS04				14		7
		74LS75				5		12
		81 LS97				20		10

Table 2. Power connections for the Bug-Light integrated circuits.
mapped output ports.
An application program can make use of these ports to write a 7-bit ASCII word to some external device such as a video card, an IBM Selectric or some other device. A/D or D/A converters can be driven from these ports as easily as the PAD and PBD ports on the KIM-1 application connector. The only time the memory locations 00F0-F8 are used by the computer is in an NMI or IRQ jump to the monitor, that is, in debugging. So you can have your Bug-Lights and output ports as well.

Construction

Table 2 shows the power connections for each of the chips in the logic diagram. All the other connections are given in the figures. My version was built on a UNICARD I, containing two
breadboard strips and an edge connector pad that matches the KIM-1 expansion pad. I soldered an edge connector to the UNICARD so I could plug the KIM-1 expansion pad into it. All the connections of the BugLight circuit except one are to the expansion pad on the KIM-1. All the connections are found on the pad symbols in Fig. 1. The $\overline{\mathrm{KO}}$ select comes from the application pad on the KIM-1. Its pin number, $A B$, is also given.

Layout is not critical, and other approaches than the one I used will work. A wire-wrap approach might be more permanent and less expensive, although I have found that the circuits on the breadboards last indefinitely. The accompanying photograph shows my version. Power was stolen from the KIM-1 power supply, since both
+5 V and ground are available at the expansion pad.

When you get your circuit built, say a one-port version, select the location you want to view with the DIP switch or by the appropriate connection. With the KIM-1 running in the monitor, address the location and store FF in it using the keypad on the KIM-1. All the LEDs should light. Change the contents of the port until you are sure that each LED is responding to the correct bit value. Stepping through the sequence 00 , $01,02,04,08,10,20,40,80$ of data values will test each light in turn.

Next, load any program, set the KIM-1 up for the SST mode and step through the program. The lights should reflect the current contents of the register you have selected to view. I had no trouble. For once my design worked the very first time I tried it. I hope you have the same kind of success. If you don't, recheck all your wiring, check the polarity on your LEDs, make sure they all work and finally make sure you haven't made a mistake on numbering the pins on the ICs.

If some bits work and some

$$
\begin{array}{ll}
\text { BEGIN } & \text { LDA \$01 } \\
\text { THERE } & \text { ASL A } \\
& \text { JMP THERE. }
\end{array}
$$

Example 2.
don't, then exchange signal paths for the two bits. For example, if one bit is working, then the 74LS75 latch for this bit will also be working. Use the same latch for a nonworking bit to see if the problem is in the latch. The circuit is simple enough so that it should not take too long to figure out any problems.

Beginning programmers have a lot more trouble visualizing what is happening as a result of a certain instruction than veteran programmers imagine. One application of Bug-Lights is to illustrate the results of various instructions. For example, set up Bug-Lights to show the contents of the accumulator (00F3). Then write a short pro= gram (shown in Example 2) in which the accumulator is loaded with 01 followed by an ASL A in an infinite loop.

Now single-step through the program and watch the 1 move from right to left on the LEDs. Replace the ASL A with a ROL A and note the difference. Other instructions can be illustrated in the same way, giving students who have difficulty visualizing zeros and ones among bits and bytes an excellent visual aid.

East Lansing. Mi. 48823 michigen rasidente add ax aslan tax.

East Lansing. Mi. $48823 \sim$ B50

Make PET Hard Copy Easy

Interfacing ASCII or Baudot printers to PET's IEEE bus is a snap with this circuit.

Dr. James M. Downey
5505 Vanderbilt Dr.
Mobile AL 36608

Many PET owners want hard copy from their machines but have been frustrated by
either the slow delivery or the high price of the PET printer. Well, if you have had some experience in building eight-chip circuits and can get your hands on either an ASCII or Baudot printer, then this interface is probably just for you.

This article describes a simple interface that was the brainchild of Don Rindsberg of The Bit Stop (a local consulting firm in Mobile specializing in microprocessor applications). The interface accepts the output, which PET places on the IEEE-

Fig. 1. The system schematic. The UART is an AY-5-1013 or one of the many pin-for-pin equivalents. Switch 1 selects for 72- or 80 -column printers. The ROM is The Bit Stop ROM \#PPA79 (for ASCII) or PPB79A (for model A Baudot) or PPB79B (for model B Baudot). The UART is shown wired for an 8-bit ASCII-type printer (see Fig. 3 for Baudot configuration). Pin-outs for PET's IEEE bus connector are provided in PET's user manual.
that . . . well, forget it!
The secret to raising the IQ and lowering the chip count of the Interface is to make one of those chips in the Interface a microprocessor. "Another microprocessor?" you say. Why not...since they only cost $\$ 12-\$ 14$ on today's market? Well then, which microprocessor? Why the 6502, of course! Its on-board clock reduces the number of support chips, and more important, its internal registers are sufficient to eliminate the need for any scratchpad RAM.

A Closer Look

The circuit is shown in Fig. 1. The total chip cost should be less than $\$ 50$, and all support chips are readily available, in fact, probably in your own junk box. The most striking feature of the circuit is that it uses no RAM, since the 6502 itself has sufficient internal registers for temporary storage. The smarts for this system reside in a preprogrammed ROM developed by The Bit Stop. (ROMs are available for $\$ 25$ each at The Bit Stop, Box 973, Mobile AL 36601. Specify part number PPA79, PPB79A or PPB79B.)
Three versions of this ROM are currently available: one for ASCII, the PPA79; one for model A Baudot machines, the PPB79A; and one for the model B Baudot, the PPB79B. To differentiate between the model A and B Baudot printers, the former types $\$$ for shift-D, while the latter prints t.

Switch 1 in the schematic selects for either a 72 - or 80 -column printer. Since PET outputs an 80 -column line, the interface simply folds the line when a 72 -column format is selected.

Serial code for the terminal is provided by a UART, and the user must choose a level-shifting network from Fig. 2 that is appropriate for his printer. The 6502 in the interface resets when PET is reset via the IFC line and also by a manual push button. On reset the interface outputs eight line feeds, which not only lets the user know that the interface and printer are working, but also provides a

The author's PET with his Texas Instruments silent writer.
convenient way to get your copy out of the machine-just push the button once or twice and up it comes.

What Happens to the Graphics?

Since the graphic characters cannot be printed, they are intercepted by the interface and appear as either a space or are converted to the lowercase of the letter keys on which the graphic resided. If your printer supports lowercase, this helps to identify the graphics when reading listed programs.

The Baudot version further requires the conversion of modified ASCII, which the PET outputs, to Baudot. Of course, it introduces the appropriate shifts to switch between letters and figures. Another problem with Baudot code is the lack of symbols for equal, greater than, etc. The interface solves this by outputting special double characters, e.g., ' E for equals or ' G for greater than. For oddball graphics, it simply outputs a space.

With this interface, the PET BASIC commands for outputting to a printer are all valid, since we are using the IEEE-488 output rather than the user port. CMD 4 and PRINT\#4, as well as the other commands, work with this interface.

Let's Build It

Wire-wrap construction is recommended, and if you lay
out the board carefully, you can fit the entire interface on a 4×4.5 inch board such as is available from Radio Shack or Vector. Regulated power at +5 volts and -12 volts can be generated from PET's transformer or from a separate power supply in the interface. One-half Amp of +5 and 100 mA of -12 are required.
Before connecting the interface to the PET it should be ini-
tially checked by powering it up and pushing the reset button. If all is well, eight line feeds will be transmitted. If the interface passes that test, double-check the wiring once more and plug it into the IEEE port in the back of the PET and give it a try; it should work.
There are some differences in the circuit between the Baudot and the ASCII version of the interface (see Fig. 3). The op-

Fig. 2. Three level-shifting networks are shown. Either of the top two will work for RS-232 printers, while the bottom one should be used for 20 mA current loop types such as a Teletype or DECwriter.

AIM PLUS: $\$ 100^{00}$ AIM and AIM PLUS: $\$ 475^{00}$

UPPERIlower case ASCII 128 Additional User Programmable Characters: GRAPHICS. SYMBOLS FOREIGN CHARACTERS Programmable Screen Format up to 80 CHARACTERS 24 LINES
KEYBOARD and LIGHT PEN Interlaces Up to 4K DISPLAY RAM
Provision for 2K EPROM
Provision to add 6502 for
STAND-ALONE SYSTEM
ASSEMBLED AND TESTED WITH 2K DISPLAY RAM
VIDEO PLUS: $\$ 245^{00}$

(JOTfヨB plus tm

ADD UP TO FIVE ADDITIONAL BOARDS
AUDIOITTY CONNECTIONS power terminals
APPLICATION CONNECTORS
FULLY BUFFERED FULLY DECODED

KIM-4 Bus Structure

MOTHER PLUS: $\$ 80^{00}$ FULLY ASSEMBLED AND TESTED
 AIM/SYM/KIM
 8K STATIC RAM POWER
Sockets for 8K Eprom
6522 1/0 Port
ON BOARD REGULATORS
EPROM
PROGRAMMER
MEMORY PLUS: $\$ 200.00$
fully assembled and tested

P.O. Box 3, So. Chelmsford, MA 01824 617/256-3649
tions for wiring essentially reconfigure the UART for either the 5 - or the 8 -bit codes. Some of the OEM printers on the market require a parallel, rather than serial, interface. This can be accomplished by eliminating the UART and placing latches on each of the eight data lines. Data can be strobed into the latches by CSO, and the printer busy signal will have to be strobed into data line seven in a Tri-state manner by use of CS3.

We've used this interface on a wide variety of printers (Teletypes, GE, Texas Instruments, Diablo) without encountering any problems. If you have a nonstandard printer (e.g., 40 columns instead of 72 or 80), I suggest that you drop Don Rindsberg a line at The Bit Stop. He enjoys the challenge, and chances are good that for a nominal fee he will provide you with a custom ROM, so your printer will be PET-able too.

(B)

Fig. 3. A simple baud rate generator (top) using a 555 integrated circuit. The output frequency should be $16 \times$ the baud rate. The wiring differences between the ASCII and the Baudot versions are shown in the lower section.

A close-up of the author's interface. Wire-wrap construction was used, and the whole circuit fits on one board easily. The box contains a simple ± 12 volt power supply. +5 volts was generated by tapping PET's 8 volt unregulated bus and dropping it to 5 volts with a regulator IC.

This DOT MATRIX display board doubles as an 8 K MEMORY You can use It as a display, memory expansion or both with
graphic and text display software available. You get resolution graphics with no wait states, no snow, and no processor graphics with
overhead. K-1008 ASSEMBLED and TESTED $\$ 240.00$. BARE BOARD $\$ 40.00 \mathrm{~K}$-1008-1 GRAPHICITEXT UTILITY SOFTWARE LISTING $\$ 20,00$.

As a dot matrix formatted 200 high by 320 wide, it allows high
resolution patterns to resolution patterns to be displayed and evaluated. it enhances
system performance for data acquisition displays, math equation plotting, etc.

For charts and graphs, it is valuable in the educational, research and business fields. Shown to the right is a single
period of a complex frequency waveform and its frequency period of a com
spectrum chart.

For text display, dot matrix is the ultimate Any character set For text display, dot matrix is the ultimate Any character set
the user desires is possibie. Even subscript and superscript in
the same column, and-mixed text and graphics. The improved the same column, and-mixed text and graphics. The improvered
the same
man-machine Interface for an unskilled the same column, and-mixed text and graphics. The improved
man-machine interface for an unskilled operator increases pro-
ductivity.

Graphics allows you to program games with much more ac-
curate representatlon of your game because YOU DETERMINE curate representatlon of your game because YOU DETERMINE
THE SHAPES on the display, not a ROM character generator. THE SHAPES on the display, not a ROM character generator.
Our LIFE program ailows fremendous creativity In creating decay.

Developed by a leading group of New England engineers for in.
terface with the three 6502 KIM BUS sysiems (KIM, VIM, AIM). The K-1008 requires only the processor card and its power supply to function as a memory. Add a monitor and you have makes K-1000 Power Supplies, K-1005 Card Flles, K-1002 8 Bi Music Systems (with advanced software), K-1020 Regulated
Wire Wrap card, K-1012 IO/COMM/PROM/2708 Programmer Wire Wrap Card, K-1012 IO/COMM/PROM/2708 Programmer
card, K-1016 16 K Memory, all sold assembled and tested or as
bare boards. Write for fechnical informatlon, prices and terms.

Overseas orders-include $\$ 3.00$ for shipping.
Micro Technology Unlimited
P.O. Box 4596

Manchester NH 03108

Write and run programs-the very first night-even if you've never used a computer before!

You're up and running with video graphics for just $\$ 99.95$ -
then use low cost add-ons to create your own personal system that rivals home computers sold for 5 -times ELF II's low price! pre recorded tape cassentes.
ELF II Gives You The Power To Make Things Happen! Expanded. ELF II can give you more power to make things happen in the real world than heavily advertised home computers that sell for a lot more money Thanks to an ongoing committment to develop the RCA 1802 for home compute use, the ELF II products-being introduced by Netronics-keep you right on the outer tringe of today's small computer technology li's a pertect computer for engineering. business. nddustral. scientific and personal applications.
Plug in the GIANT BOARD to record and play back programs, edit and debug programs, communicate with remote devices and make things happen in the outside world. Add Kluge (prototyping) Board and you can use ELF il to solve special probiems such as operating a complex alarm system or controling a printing press. Add 4k RAM Boards to write longer programs, store more intormation and solve more sophsticated probiems.
ELF II add ons already include the ELF II Light Pen and the amaring ELF BUG Monitor- two extremely recent breakthroughs that have not yet been duplicated by any other manulacturer.
The ELF BUG Monitor lets you debug programs with lightening speed because the key to debugging is to know what's inside the registers of the microproces sor. And, with the Elf BUG Montlor, instead of single stepping through your programs, you can now display the entire contents of the registers on your TV screen. You tind out immediately what's going on and can make any necessary changes.
The incredibie ELF II Light Pen lets you write or draw anything you want on a TV screen with lust a wave of the "magic wand." Netronics has also introduced the ELF II Color Graphics \& Music System-more breakthroughs that ELf II ELF II Tiny BASIC

ELF II Tiny BASIC

Urimately, ELF II understands only machune language - the fundamental coding quired by EIF compul introduced an ELF II Tiny BASIC that makes communicating with ELF II breeze.
Tiny
Tiny BASIC saves you the time of having to code your individual instructions in machine language for ELF II. Instead, you simply type instructions on a keyboard -PRINT, RUN, LOAD, ETC. Your Tiny BASIC program automatically translates them into machine language for ELF II. Then it translates ELF II's output back into sumple words and symbols for you.
Now Available! Text Editor, Assembler,
Disassembler And A New Video Display Board
The Text Editor gives you word processing ability and the ability to edrt programs or text while it is displayed on your video monitor. Lines and charac ters may be quickly inserted, deleted or changed. Add a printer and ELF II can typa letters for you-error free-plus print names and addresses from your mailing list!
ELF II's Assembler translates assembly language programs into hexidecimal machina code for ELF II usa. The Assemblar features mnamonic abbreviations rather than numerics so that the instructions on your programs are easier to read-this is a big halp in catching errors.
ELF II's Disassambler takes machina coda programs and producas assembly language sourca listings. This helps you understand the programs you are working with. . and improva them when raquirad.
The new ELF II Vidao Display Board lets you generate a sharp, professional 32 or 64 character by 16 line upper and lower case display on your TV screen or video monitor-dramatically improving your unexpanded $\$ 99.95 \mathrm{ELF} I I$. When you get into longer programs, the Video Display Board is a real blessing! Ask Not What Your Computer Can Do

But WHAT CAN IT DO FOR YOU?

Don't be trapped into buying an expensive dinosaur, simply because you can afford it. ELF II is more advanced and more fun to use than big name computers that cost a lot more monay. With ELF II you learn to write and run your own programs. You'ra not just a keypunch operator. No matter what your interests are, ELF II is the fastest way to get into computers Order from the coupon below!

Netronics R\&D Ltd., Dept KB-9 333 Litchfield Road, New Milford, CT 06776

PHONE ORDERS ACCEPTED! Call (203) 354-9375 \square RCA COSMAC ELF II language is a le
95 plus $\$ 3$ posiage and alke $\$ 5$ postpald
63 to 8 voll AC power
alike $\$ 5$ posipald
I Deluxe Metal
$\$ 2995$ plus $\$ 250$
Total Enclosed \$

Power Supply (required) $\$ 495$ posipard
RCA 180 User 5 Manual $\$ 5$ postpard
I am atso enclosing payment (including postage \& handling) for CHARGE IT! Exp. Date

ALSO AVAIL ABLE FOR ELF II
GIANT BOARD ${ }^{\text {TM }}$ kII with cassette I/O RS 23226 variables A 2 IEI IF/THEN INPUT PRINT GO TO
 instructions and a system monitor/editor $\$ 3995$ plus $\$ 2 \mathrm{p} \& \mathrm{~h}$
Kluge
Kluge IPrototypel Board accepts up 10.36 iC s
$\$ 17.00$ pius $\$ 1$ p 8 h
. 4 k Static RAM knt
$64 \mathrm{k} \$ 8995$ plus $\$ 3 \mathrm{p} 8 \mathrm{n}$
7I Gold plated 86-pin connectors tone required tor each
plug in board) $\$ 5.70$ ea . posipaid
plug in board) $\$ 5.70$ ea . posiparid
\square Expansion Po
RA Expansion Power Supply
RAM) $\$ 34.95$ plus $\$ 2$ p 8 h

- Protessional ASCCI Kevboard kit with 128 ASCII
upper / lower case set 96 printable characters. onboard
regulator parily logic selection and choice of 4 .
regulator parity. logic selection and choice of 4 hand-
shaking signals to mate wilh almost any computer
shaking signals to
$\mathbf{S 6 4 .} 9.9$ plus $\$ 2$ d 8 m
Deluxe metal cabinet lor ASCII Keyboard. $\$ 19.95$
plus $\$ 250$ p\&
plus $\$ 250 \mathrm{p} \& \mathrm{n}$
\square Video Display
\square Video Display Board kit lets you generate a sharp protessional 32 ot 64 character by 16 line upper and
lower case display on your Iv screen or video monitoraramalically umproving your unexpanded $\$ 9995 \mathrm{EIF}$ II
(Fits inside ASCIt Keyboard Cabinet) $\$ 8995$
plus $\$ 2$ p\&n
ก

tands include SAVE $10 A D \pm x \div 11$
programs and produces assembly language source lisi ings to help you understand and improve your proqrams
$\$ 1995$ on casselte tape
SA SAVE $\$ 990$ - Text Edilor Assembler \& Disassembler purchased logether only $\$ 4995$! (Require Video Dis
Diay Board plus 4 k memory) [] ELF II Light Pen assembled \& rested $\$ 795$ olus \&i es \& Muste System Board hi Sa9. 95 plus $\$ 2$ p\&h
\square ELF II connects directly to the viden inout of your iv your antenna terminals inslead order RF Modulator
$\$ 8.95$ $\$ 8.95$ postpard
Coming Soon A.D D.A Converter Controller Board

Print
Name
Name
Adaress

Apple II
 High-Resolution Graphics

What you always wanted to know about HIRES, but weren't resolute enough to ask.

Fig. 2.

Thave had my Apple II for about six months now and have thoroughly enjoyed it. I have written an inventory system, a word processor and a universal database for the Apple II, but my most rewarding accomplishment came when I conquered the high-resolution graphics. This achievement is what I am going to share with you in this article.

If you are like me and had tried to POKE a number into the high-resolution-graphics contiguous memory locations, you were perplexed by the way it was displayed on the screen. If you have not tried it yet, listen to my experience. I set up the routine in Fig. 1 and ran it.

Screen Display

The screen, as broken down in Fig. 2, displayed a tiny violet dot starting at the top left (location 8192) and proceeded to the right-hand side of the screen. When it ran off the right-hand side, it reappeared again onethird down the screen at section 2, location 8232 and proceeded to the right again. As before, it disappeared and reappeared again on the left, but this time it began two-thirds down the screen at section 3 , location 8272. (Keep in mind that so far these numbers are only 40 positions apart.)

The dot left the screen on the right and reappeared again at the top of the screen-no, not under the first line on top but eight lines below it at section 1, subsection 2, location 8320 . It filled that line then jumped to section 2 , subsection 2 , line 1 , then to section 3 , subsection 2 , line 1 , then back up to section 1 , subsection 3 , line 1 until it filled

Fig. 1.

Point $P=8192+\left(A^{*} 40\right)+\left(B^{*} 128\right)+\left(C^{*} 1024\right)$
Example 1.
all lines 1 of each subsection. Then it finally jumped back up to the second line of section 1 , subsection 1 and repeated the whole cycle again until the screen was full of dots.

I thought to myself that this is not the way to put a computer together. I could not even conceive of attempting to write a program that would draw an object going up or down the screen. Robert Bishop did just that in his game program ("Rocket Pilot," Kilobaud No. 13, p. 90), so I pressed on to find out if I could.

As shown in Fig. 2, the screen has 192 horizontal lines that are broken up Into three sections of 64 lines each. Each section is broken up into eight subsections of eight lines each. Each section is 40 locations apart; each subsection is 128 locations apart; and each line within a subsection is 1024 locations apart. What a mess!

Formulas

After many, many hours of studying that mess, I decided that there should be some formula to plot a point on the screen with only one known variable, a line number (LN) between 1 and 192; therefore, using this basis, I came up with the following.

- To find what section LN is in, divide LN by 64 giving the section A.
- To find out what subsection LN is in within the section, divide A by 8 giving subsection B.
- To find out what line LN is on within subsection B, divide A by 8 , and then C is equal to the remainder.
Next, I had to reconstruct the pieces to give me the starting point. The first memory loca-
tion used in high resolution is 8192. I came up with the formula for reconstruction as shown in Example 1.1 put these calculations in the routine in

```
FOR LN = 1 TO 192
A = LN/64
    B=A/8
    C C = A MOD }
    50 P = (8192 + (A*40)+(B*128)+(C*1024))
    POKE P,1
70 NEXT LN
```

Fig. 3.

Fig. 3 and ran it.
The result was a dot drawn on line 1, position 1, then on line 2 , line 3 and so on down the left side of the screen in the first position. So far, so good. Now that I had found the starting
points for each line, I had to draw dots across the screen from the starting point and go all the way to the right side.

Since there were only 40 locations from one section to another, each line had to con-

Fig. 4. Color bar chart.
 sette tapes without written documentation because you can SEE the filename. If you forget to label a tape, you can use TRcopy to display the tape contents tape, you can use Trcopy
and identify the cassette.

VERIFY CASSETTE TAPES
With TRcopy you can verify both the original tape and the tape copies. You can make certain that your machine reads the original tape correctly and that it makes byte-for-byte copies. TRcopy also counts as it reads giving you the exact length of the data.

MAKE BACKUPS FOR YOUR PROGRAMS
Now you can make backup copies of your valuable programs. Many times a cassette that you make will load better than one that is mass produced. The
original can then be kept as a backup in case the copy is damaged.

MAKE COPIES OF YOUR SOFTWARE
If you are in the software business you can use TRcopy to make tested copies of your programs for sales distribution. TRcopy produces machine language tapes that are more efficient than those pro-
duced by the duced by the assembler itself.

RECOVER FAULTY DATA

With TRcopy you can experiment with the volume and level controls and you can SEE what the computer is reading--even if your computer will not read the
data through normal read instructions! In this way it is possible to read and copy faulty tapes by adjusting the volume control until you SEE that the data is input properly.

SIMPLE - FASCINATING - FUN

TRcopy is not only a practical utility program. It is also a fascinating graphics program that lets you SEE, for the first time, cassette data as your com-
puter is reading it. And it's as simple as $1-2-3$ Just load, verify and copy. You will now be able to use cassette tapes with confidence knowing that TRcopy is there when you need it.

The TRcopy system is a machine language program with documentation explaining tape leaders, sync bytes, check sums and other formatting conventions. With the TRcopy system, you can SEE what you are doing!

sist of 40 memory locations; thus, I added the following statements to the above routine and ran it.

```
55 FOR X=1 TO 40
60 POKE P + X, }
6 5 ~ N E X T ~ X ~
```

The dot was drawn from left to right and from top to bottom, one line after another until the whole screen filled up with contiguous dots.

I suppose by now you are
plays black. These are the four colors that Apple computer said were available in highresolution graphics.

Application Program

Now that you have the knowledge of high-resolution graphics, create some fun games for the Apple II computer-we need more-or try the paddle drawing routine I brewed up in Fig. 5.
wondering why only 40 dots came across the screen. I thought the same and continued my experiments and found out that each location on the screen consisted of an 8-bit bar. To clarify, location 8192 displays up to eight bits or dots of light as shown in Figure 2 at location 16436. After some time experimenting, I found out not only did one location display eight bits of light, but also combinations of bits determined what colors were displayed.

Color Bar Chart

I came up with the 8-bit color bar chart of Fig. 4. By poking a 1 into a memory location, a violet dot appeared as shown in the chart. By poking a 2 into a location, a green dot appeared; by poking a 3, a white dot appeared; and so on to 255. By observing the chart 1 found that bits $1,3,5,7$ are violet-displaying bits, and 2, 4, 6, 8 are greendisplaying bits. A combination of an even and odd number of bits displays white; zero dis-

Statements 10 and 20 turn on the high-resolution graphics display. Statement 25 clears the screen to black; you can clear the screen to white by changing the zero to 255 . Statement 30 uses paddle 1 as the vertical positioner. Statements 40 through 50 compute the vertical position. Statements 55 and 60 use paddle 0 as the horizontal displacement from the vertical point on the left side of the screen. Statement 70 turns the dots of light on.

As paddle 0 increases or decreases, bits $1,2,4,8$ of the color bar are turned on separately. Statement 72 blanks a color bar if the button on paddle 0 is depressed. Statements 75 and 9010 check the keyboard strobe for any key that was pressed and resets the program to clear the screen and start over.

All of my programs can be obtained through me or through Computer Components, 6791 Westminster Avenue, Westminster CA 92683.

TRS－ 80

Custom Fabric Dust Covers made from velour，cor－ duroy，or denim．Three－Piece Set fits the keyboard， the video，and the tape drive．Helps combat bounce－ causing dust contamination．Slots for all cables so the covers just slip on．Colors to match your room decor．Machine washable．Preshrunk．
CHOICE：VELOUR CORDUROY DENIM Red Brown Blue
Green Royal Blue
Brown Gold
Maroon
THREE－PIECE SET－\＄19．95
DISK DRIVE COVER－\＄7．95 KEYBOARD ONLY－\＄7．95
SCREEN PRINTER COVER－\＄9．95
TERMS：PREPAID．Check，Money－order，Master Charge，VISA．Add Si for shipping．Mass．Residents add $\mathbf{5 \%}$ sales tax．Money－back guarantee．Write for club or dealer discounts．

กЛニGรАベ KEYED FILE MANAGEMENT

Put data at your fingertips．．．easily accessed，displayed and updated by key．Designed to meet all of your data management needs．MAGSAM ${ }^{\text {™ }}$ allows you to quickly implement sophisticated keyed file structures through simple CBASIC statements．
Standard MAGSAM ${ }^{\text {w }}$ features include record retrieval with random by key，sequential by key，and generic（＂wild card＂）search，and complete compatibility with all CBASIC file facilities．Each MAGSAM $^{\text {T }}$ Package includes the MAGSAM ${ }^{\text {™ }}$ file manager， MAGSAM ${ }^{\text {ww }}$ tutorial program，MAGSAMD ${ }^{\text {w }}$ file dump utility，User Guide，Reference Card，and one year update service．
Select the version of MAGSAM ${ }^{\text {w }}$ that meets your requirements．All versions of MAGSAM ${ }^{*}$ are completely upward compatible and may be upgraded at any time for the price difference．
－MAGSAM III＇M－Most advanced version．Multiple Key support （any number of keys），and Record and Key Deletion with automatic reclamation of disk space．
$\$ 145 \dagger$
－MAGSAM $\mathbf{I I}^{\text {w }}$－Single Key support with full Delete
capability
\＄99†
－MAGSAM $\mathrm{I}^{\text {º }}$－Entry level version．Single Key support without
Delete capability．
$\$ 75 \dagger$
－User Guide only－comprehensive tutorial and reference manual．
Available for $8^{\prime \prime}$ soft sector，Micropolis，and TRS－80 disk formats． Requires $C P / M^{*}$ or derivative and CBASIC．Distributed as CBASIC subroutines in source form．
Visa and Masterchagre welcome．Dealer and OEM inquiries invited．

Beat the Computer

Don't venture to the tables of Las Vegas or Atlantic City without trying this program.

Jerry D. Howard
3955 Swenson \#404
Las Vegas NV 89109

People the world over enjoy the game of blackjack, or "21." However, many of them enjoy it less than they could. Why?... because they lose. They go to Las Vegas and lose at the tables. They play with their friends and lose hundreds of pennies. They play with their home computer and drop thousands of imaginary dollars, always chalking it up to "bad luck."
Here is a way to stop all that and change your luck quite painlessly! Have your home computer teach you to be a blackjack expert using this computerassisted instruction (CAI) blackjack strategy program.

The strategy taught by this program is the same as that found in any good book on the game of blackjack. Its development was begun by Baldwin et al' and further refined by Professor E. O. Thorp ${ }^{2}$ and others ${ }^{3}$. When it is learned and applied, it gives the player basically an even chance at the game of " 21 ," whether against a dealer in Las Vegas or against your TRS-80 or SWTP computer at
home. For further information on the game of blackjack, please refer to the reference list at the end of this article.

What the Program Does

First the program goes over with you, point by point, all the fundamentals of blackjack basic strategy. In order to understand this more easily, let's define a few blackjack terms. Hit-To take another card. Stand-Staying with the cards you have and letting the dealer take his turn at hitting or standing. (Note: The dealer must take hits until he gets 17 or above.) Double Down-The act of taking one more card only and, at the same time, doubling your bet. This play is made when you feel one additional card will give you a winning hand.
Pair Splitting-When your first two cards are of the same value, such as two 8s or two 3s, for example, you have the option of "splitting" them and making two hands by taking hits on each member of the pair. Two aces and two 8 s are the pairs most often split.
Soft Hand-This is a hand that contains an ace and totals 10 or less without counting the ace, for example, the hand A7, which could consist of an ace and a 7
or an ace and a 3 and a 4. Most people would call this hand "soft 18."

If this terminology is a bit confusing to you, I would suggest that you learn the rules of play from a simple book on blackjack before attempting to learn the playing strategy that the program teaches.

After this review of basic strategy, the program then gives you a thorough drill in practically every strategy situation that could come up in the game of blackjack. When you make a mistake it corrects you. If you don't know the correct answer, it tells you. And it gives you compliments for doing a good job!

Sample run.

```
THIS PROGRAM WILL TEACH YOU ELACKJACK STRATEGY.
FIRST A REUIEW OF THE STRATEGY...
WHAT YOU NO DEPENDS ON THE DEALERS UP CARD
    AND ON YOUR HAND (YOUR FIRST 2 CARIS).
WHEN THE NEALER HAS 7,8,9,10,OR ACE SHOWING
    HIT UNTIL YOU GET 17 OR ABOVE.
IF THE DEALER HAS 2,3,4,5,0R 6 UP YOU
    STAND IF YOU HAUE I3 OR ABOUE.
    HIT 12 IF DEALER HAS 2 OR 3 UP.
    THIS SECTION TELLS YOU WHEN TO IOURLE DOWN.
    DOUELE DOWN WHEN YOU HAVE 11 ALWAYS !
DOUBLE WHEN YOU HAVE & DEALER SHOWS
        M ANY CARD EXCEPT 10 OR A
NOTE: WHEN YOU CAN'T DOUELE DOWN ON YOUR 'SOFT'
    HANDS, DO AS FOLLOWS:
    A2,A3,A4,A5,A6 HIT IF YOU CAN'T DOUBLE.
    A7 STAND AGAINST LIEALER CARD OF 2,7,8,OR A
    A7 HIT AGAINST DEALERS 9 OR 10
    AB STAND.
    TYPE RETURN TO MOUE ON.. ?
    THIS SECTION SHOWS YOU WHEN TO SPLIT PAIRS.
```

The program tells you all you need to know to become a better player than over 95 percent of the people who play blackjack in Las Vegas. I know because l've seen them play. Most people can't seem to get themselves to learn a strategy from a book, but a CAI program like this makes it easy.
A full run of the program will take about 20 to 45 minutes, depending on how fast your computer is and how fast and accurate your responses are. When you can go through the whole program with no mistakes, you can consider yourself ready to head for the green felt of Las Vegas or the green screen of an Apple II.

How the Program Works

The first part of the program is quite simple. It reviews the strategy by means of a group of print statements beginning at line 550. There are delays and user "continues" at lines 600, $640,715,722$ and 745 . These are for screen timing and can be removed if you're using a hardcopy terminal.

The second part of the program uses the information contained in all those data statements. The data statements contain four practice tables: A
hit/stand table, a double down table, a pair splitting table and a large general practice table. The program reads the player's hand, dealer up card and correct plays in groups of 20 , which it then randomizes so the questions are asked in a different order each time the program is run. The player may terminate the drill at any point by typing BYE as the answer to a question. Otherwise, all four tables will be completed... a real workout!
The program runs, minus two or three REM statements, on my 16K SWTP 6800 in 8 K of user memory. BASIC takes up the other 8 K . There are no fancy or "Extended BASIC" statements in the program, so it should be easily adaptable to a wide variety of BASICs.

References

1. Roger Baldwin et al, "The Optimum Strategy in Blackjack," J. of the American Statistical Assoc., vol. 51, 1956.
2. Edward O. Thorp, Beat the Dealer, Random House, 1966. 3. Lawrence Revere, Playing Blackjack as a Business, Lyle Stuart, Inc. (Note: This book is especially recommended for serious blackjack students.)

Program listing.

0001 REM *** ELACKJACK EASIC STRATEGY FROGRAM *** 0002 REM WRITTEN EY JERFY HOWARII
0003 REM
0007 REM *** HERE ARE ALL THE FRACTICE TAELES
0008 REM ** THIS IIATA IS A BIT OF A DIRAG TO TYPE IN FUT
0009 REM SAUES MANY HOURS IN LEARNING THE STRATEGY
0010 DATA $15,9, H, 13,5,5,16,8, H, 12,4,5,15,2,5,16,5, S, A 7,7, S$
0020 IATA $15, A, H, 13,6, S, 16,2, S, 12,5, S, 15,8, H, 14,5, S, A 7, A, S$ 0030 DATA $16,9, H, 14,7, H, 16,10, H, 12,6, S, 15,10, H, 13,3, S, A 7,8, S$ 0040 DATA $15,5,5,14,8, H, 16, A, H, 12,2, H, 15,7, H, 13,4, S, A 7,10, H$ 0050 DATA $14,10, H, 16,6,5,14,5,5,12,3, H, 13, A, H, 13,2, S, A 7,9, H$ 0060 LIATA $14,6,5,13,10, \mathrm{H}, 16,3,5,16,7, \mathrm{H}, 14,9, \mathrm{H}$
0070 LATA $14,6,5,77,10,5, N, N, N$
0074 REM ** THAT WAS THE HIT/STAND TAELE.
OOBO RATA
0080 DATA $10,4, \mathrm{~L}, 9,7, \mathrm{H}, \mathrm{A} 4,4, \mathrm{I}, 11,9,11, \mathrm{~A} 2,3, \mathrm{H}$,
0090 DATA A5,6, $1,62,4, H, A 7,3, D, 11,5, \mathrm{D}$
0100 IATA $10,5,[1,9,8, H, A 4,3, H, 11,10,11, A 2,5,1, A 6,6, D$
O110 LATA $53,5, \mathrm{I}, \mathrm{A}, 4, \mathrm{I}, 11,6, \mathrm{D}$
0120 DATA $10,6,[1,9,3,1, A 5,3, H, 11, A, I 1, A 2,6,[1$,
0130 IATA $A 6,3,[1,62,6, H, A 7,5,[1,11,7,1)$
0140 IIATA $10,7,1,9,4,11, A 4,5,[1,11,7,11$
0150 IATA $53,3, H, A 7,6, \mathrm{I}, \mathrm{A} 2,4, \mathrm{I} 11,1)$
160 DAT $10,8,1,9,5,1, A$
0170 IATA AB,3,S,A3,5,I
0180 LIATA $10,9,[1,9,2, \mathrm{I}, \mathrm{A} 5,5,[1,11,4, \mathrm{I}, \mathrm{A} 3,6,[1, A 6,2, \mathrm{D}$
0190 DATA $53,6, D, A 8,6, D, A 4,6, I, N, N, N$
0195 REM ** NEXT THE FAIR SFLITTING TAELE.
0200 DATA $99,4, \mathrm{~F}, 44,2, \mathrm{H}, 77,6, \mathrm{~F}, 66,4, \mathrm{~F}, 22,3, \mathrm{~F}, 33,7, \mathrm{~F}, 99,10,5$ 0210 DATA $99,5, \mathrm{~F}, 44,3, \mathrm{H}, 77,7, \mathrm{P}, 66,5, \mathrm{~F}, 22,4, \mathrm{~F}, 33,8, \mathrm{H}, 99, \mathrm{~A}, \mathrm{~S}$ 0220 LIATA $99,6, \mathrm{~F}, 44,4, \mathrm{H}, 77,8, \mathrm{H}, 66,6, \mathrm{~F}, 22,5, \mathrm{~F}, 33,2, \mathrm{H}, 99,2, \mathrm{~F}$ 0230 LIATA $99,7,5,44,5, \mathrm{D}, 77,2, \mathrm{~F}, 66,7, \mathrm{H}, 22,8, \mathrm{H}, 33,3, \mathrm{H}, 99,3, \mathrm{~F}$ 0240 IATA $99,8, F, 44,6,1,77,3, F, 66,2, F, 2, B, F, 33,4, F, A A, A, F$ 0250 DATA $99,9, \mathrm{~F}, 88,10, \mathrm{~F}, 77,9, \mathrm{H}, 66,8, \mathrm{H}, 22,2, \mathrm{H}$
0260 LIATA 44,7,H,AA,10,F,N,N,N
0265 REM ** NOW A EIG GENERAL FRACTICE TABLE
0270 LATA $12,6,5,53,4, \mathrm{H}, 53,6, \mathrm{D}, 53,5, \mathrm{D}, \mathrm{A}, 10, \mathrm{H}, 44,7, \mathrm{H}, 62,6, \mathrm{H}$ 0280 IATA AA,3,F,12,2,H,12,4,5,16,2,S,12,3,H,13,2,S,12,5,S
0290 DATA $14,2, S, A 2,4,1, A 4,3, H, A 2,6,1, A 4,5,1, A 2,5, D, A 2,3, H$ 0300 IATA $10,9, \mathrm{I}, 73,3, \mathrm{I}, 64,10, \mathrm{H}, 55,2, \mathrm{D}, 82,4, \mathrm{I}, 73,8, \mathrm{~L}, 64,5, \mathrm{I}$ 0310 LIATA $44,6, D, A A, 9, P, A A, 10, P, A A, 2, F, A A, 7, P, A A, B, P, A A, A, F$ LIATA
0320 LIATA $13,8, H, H, 13,6, S, 15,5, S, 13,3, S, 13,5, S, 14,4, S, 14,6, S$ O330 LATA AB,5, S, $33,8, \mathrm{H}, 33,3, \mathrm{H}, 33,5, \mathrm{~F}, 33,7, \mathrm{~F}, 33,2, \mathrm{H}, 33,4, \mathrm{~F}$ 0340 DATA $33,6, P, A 6,2, D, A 6,6, D, A 4,4, D, A 6,4,11, A 6,5,[1, A 7,3,[1$ 0350 IIATA A7,2,5,44,4,H,62,5,H,44,3,H,44,2,H,88,9,P,44,5,I 0360 DATA $13,4,5,16,5,5,14,3,5,14,5,5,15,2,5,15,4,5,15,6,5$ 0370 IIATA $A 4,6, \mathrm{~L}, 55,7, \mathrm{IL}, 83,9, \mathrm{D}, 74, \mathrm{~A}, \mathrm{II}, 82,6, \mathrm{I}, 73, \mathrm{~A}, \mathrm{H}, \mathrm{A} 4,2, \mathrm{H}$ 0380 IIATA $65,7, \mathrm{D}, 22,4, \mathrm{~F}, 22,6, \mathrm{~F}, 22,8, \mathrm{H}, 22,5, \mathrm{~F}, 22,3, \mathrm{~F}, 22,7, \mathrm{~F}$ 0390 IITA $22,2, H, A B, 3, S, A 3,5,11, A 6,3, T 1, A 8,2, S, A B, 4, S, A B, 6,11$ 0400 DATA $15,3,5,66,6, F, 66,7, H, 88,10, F, 66,3, F, 66,5, F, 66,2, F$ 0410 DATA $66,4, \mathrm{~F}, 63,4, \mathrm{D}, 54,8, \mathrm{H}, 72,3, \mathrm{D}, 63,5,11,54,2, \mathrm{D}, 72,7, \mathrm{H}$ 0420 IATA $72,6,1,16,8, H, 15,7, H, 14,8, H, 14,7, H, 15,8, H, A 9,4, S$ A 450 450 LIATA $77,2, F, 7,4, F, 7,6, F, A 7, A, S, 7,0, H, 7 Z, J, P, J, F$ 0460 DATA $99,5, F, 8, H, 1)$ 0480 DATA 92 , 0490 IIATA A9,5,S,A7,6,II,A9,3,S,A7,4,II,A9,6,S
0495 IIATA $83, A$, II
0495 IIATA 83,A, I
0500 IATA A7,5, $, 14, A, H, 999,999,999$
0540 REM ** FLOW OF THE FROGRAM STARTS HERE
0550 PRINT - THIS FROGRAM WILL TEACH YOU ELACKJACK STRATEGY.
0555 PRINT
0560 PRINT • FIRST A REUIEW OF THE STRATEGY....
0565 FRINT
0570 FRINT :FRINT * WHAT YOU DO DEFENLIS ON THE UEALERS UF CARD' 0575 FRINT :AND ON YOUR HAND (YOUR FIRST 2 CARIIS)."
0580 FRINT - WHEN THE DEALER HAS $7,8,9,10,0$ ACE SHOWING• 0590 PRINT * HIT UNTIL YOU GET 17 OR ABOUE. " :FRINT
0598 REM ** A LITTLE DELAY HERE.
0600 FOR $\mathrm{I}=1$ TO 500: NEXT I
0610 FRINT : IF THE DEALER HAS $2,3,4,5,0 \mathrm{R} 6$ UP YOU.
0620 FRINT. STANI .
STANI IF YOU HAVE 13 OR AEOVE.
0630 FRINT HIT 12 IF IIEALER HAS 2 OF 3 UF. : :PRINT
0640 FOF $I=1$ TO 500:NEXT I
0660 FRINT :PRINT DOUELE NELS YOU WHEN TO DOURLE NOWN 0660 FRINT :PRINT HOUBLE HOWN WHEN YOU HAVE 11 ALWAYS!
 0690 FRINT - 9 ANY 2 THROUGH 6. 0700 FRINT. 0710 PRINT 0712 PRINT 0714 FRINT 0715 FRINT O716 PRINT :FRINT: TYFE RETURN TO MOVE ON';:INFUT A\& 0717 PRINT : FRINT:NOTE: WHEN YOU CAN
0718 FRINT - A2,A3,A4,AS,A6 HIT IF YOU CAN'T DOUBLE." 0719 PRINT - A7 STANI AGAINST UEALEK CARD OF 2,7,8,OR A 0720 FFINT - A7 HIT AGAINST DEALERS 9 OR 10 .

0724 PRINT :PRINT. THIS SECTION SHOWS YOU WHEN TO SPLIT PAIRS.
0725 PRINT :PRINT. ALWAYS SPLIT AA AND 88.
0727 FRINT :PRINT' NEVER SPLIT 44 , 55 , OR 1010
0730 FRINT : SFLIT NEVER SFLIT AGAINST
0732 PRINT :
0735 PRINT
0737 FRINT
0737 FRINT
$\begin{array}{ll} & 66 \\ 0740 \text { PRINT : } 77 & 2 \text { THROUGH } 6^{\circ}\end{array}$
0742 PRINT : 99 THROUGH 9 (EXCEFT 7).
0745 PRINT :PRINT" TYPE RETURN TO CONTINUE';:INPUT AS
0750 FRINT :PRINT ${ }^{\circ}$ WHEN YOU PLAY BLACKJACK FOLLOW THE ABOUE*
0755 PRINT: RULES COMPLETELY I DON'T FOLLOW HUNCHES
0755 PRINT - AND NEVER TAKE INSURANCE !
0763 FOR I $=1$ TO 500: NEXT I
0765 PRINT :PFINT. NOW FOR THE HARI FART. . .
0810 PRINT :PRINT "ENTER A NUMEER BETWEEN 1 AND 50 *:
0820 INPUT R
0825 REM ** R IS USED TO INITIALIZE THE RANIOM * GENERATOR. 0880 PRINT :PRINT "THE ANSWERS YOU GIVE ARE AS FOLLOWS:

EXTRA SPECIAL
 Prices \& Delivery

PRINTERS

HEATHKIT LINE PRINTER WH-14 (ASSM)
Heath quality, microprocessor-controlled line printer, ${ }_{96}$ Char. ASCII set, upper and lower case, 5×7 do matrix print head, speed 135 CPS with selectable line length of 80,96 or 132 Char., 110 to 4800 baud, adjustable sprocket feed from $21 / 2^{2}$ to $91 / 2^{2}$, serial 1/O RS232 and 20 Ma loop. Print quality is excellent.
CENTRONICS PRINTER \#779 w/tractors \& paper tray
$\$ 995.00$ TEXAS INSTRUMENTS PRINTER *810 (Basic). $\$ 1689.00$

TERMINALS

INTERTUBE II BY INTERTEC
(Terminal) Z-80 controlled, 80 Char. by 24 lines, 128 upper and lower case, ASCII Char., graphic symbols, reversible video, half intensity video, special 25th display (status) line, $12^{\text {" }}$ screen, operating mode: conversational, message, page, Char. insert/ delete, line insert/delete, half or full duplex, keyboard with 18 key numeric pad, full cursor control, RS232 and $20 / 60 \mathrm{Ma}$ loop, auxiliary printer port, 75-9600 baud and a lot more special features all software controlled, no little mini-dip switches to bother with.
HAZELTINE 1400 VIDEO TERMINAL.
SOROC IQ-120 TERMINAL.
\$ 650.00
\$ 795.00
SOROC IQ-140 TERMINAL $\$ 1296.00$
CAT ACOUSTICAL MODEM

DISK DRIVES

MEMOREX 550 Disk Drive $8^{\prime \prime}$ Double Density
6^{\prime} cable for two drives
Connectors for power supply (2 sets)
Power Supply
PERTEC 5% " disk drives for TRS-80 (40 Track Flippy Disk) Cable..................
TARBELL DISK CONTROLLER BOARD (Kit)
TARBELL CASSETTE BOARD

COMPUTERS

TEXAS INSTRUMENTS 99/4 HOME COMPUTER
$\$ 1095.00$ CPU - The powerful 990016 bit microprocessor with 256 byte scratch pad RAM. MEMORY - Total 72 K bytes of ROM \& RAM, external ROM memory - (Solid state software command modules) Up to 30 K bytes each. KEYSIC \& SOUND 5 , ful rravel, overi 3 , tives, $13^{\prime \prime}$ color minito GRAPHICS - 16 colors high resolution $13^{\prime \prime}$ color monitor. GRAPHCS - 16 colors high resolution animated displays, charts, graphs and more. animated displays, charts, graphs and more.
Built-in software - 14 K byte BASIC interpreter. 13 digit, floating point, internal graphics language interpreter, equation calculator $\&$ internal 4.4 K te monitor. 'PERIPHERALS - remote controls, solid state speech synthesizer, RS-232 interface, recorder interface.
EXIDY SORCERER $\mathbf{w} / 16 \mathrm{~K}$. W/32K. $\$ 1035.00$ $\$ 1135.00$
LEEDEX VIDEO $\mathbf{1 0 0}$ MONITOR $\mathbf{1 3 5 . 0 0}$
KIM-1 COMPUTER
\$ 169.95
CROMEMCO
Z2W Assembled
\$ 844.00
220 Assembled.
$\$ 425.00$
$\$ 25.00$
$\$ 4.50$
$\$ 98.00$
$\$ 349.00$
$\$ 29.50$
$\$ 29.00$
$\$ 65.00$
$\$ 179.00$
$\$ 110.00$

MEMORY BOARDS

CENTRAL DATA 64K BOARDS
2 MHZ Assembled \& Tested Dynamic Ram 64 With 16K Installed Expandable With 32 K Installed Expandable With 48K Installed Expandable (4 MHZ Memory Boards - Call for prices.
GODBOUT MEMORY BOARDS 8K - $\$ 134.00$

ALL STATIC (KIT) 16K - $\$ 249.00$ 32K - $\$ 498.00$

I/O Board - $\$ 184.00$
CROMEMCO PRODUCTS 10% Off

GADGETS \& GAMES

T.I.'s SPEAK N' SPELL ... $\$ 53.50$

FIDELITY ELEC's Chess Challenger III - 10 Levels. . 00

Checks, money orders accepted
VISA ${ }^{\prime}$
Add $\$ 2.50$ freight charges on orders under 10 lbs . Over 10 lbs . F.O.B. Cleveland
QUASAR DATA PRODUCTS
25151 Mitchell Dr., No.Olmsted, Ohio $44070(216) 779.9387$

0890 PRINT - H $=$ HIT, $S=$ STANII, $D=$ DOUBLE IIOWN,
0900 PRINT • $P=$ PAIR SPLIT, $T=$ TELL ME
0900 PRINT • P = PAIR SPLIT,
2001 FOR I=1TOR:Z=RND (0) : NEXT
2010 DIM $X(20), A \$(20), B \$(20), C \$(20)$
2010 DIM $X(20), A \$(20)$, B $\$(20), C$
2020 FOR $I=1 T 020: X(I)=I: N E X T$
2025 REM ** THE QUESTIONS ARE ASKED IN GROUPS OF 20 ,AND 2026 REM RANDOMIZED WITHIN THAT GROUF SO THE FRACTICE
2027 REM IS DIFFERENT EVERY RUN.
2030 FOR J=1T019
$2040 \quad Y=\operatorname{INT}($ RNLI $(0) *(21-J))+J$
$2050 \mathrm{~T}=X(J): X(J)=X(Y): X(Y)=T$
2060 NEXT J
2070 PRINT 'TYFE 'EYE' IF YOU WANT TO STOP.
2080 PRINT :PRINT
2090 PRINT "YOUR HAND", "DEALER SHOWS", "YOUR PLAY"
2500 FOR $L=1$ TO 20
2502 REM ** AS (L) IS THE PLAYERS HANII.
2503 REM ** B\$(L) IS THE DEALERS UP CARD.
2504 REM ** C\$(L) IS THE CORRECT PLAY.
2510 READ AS (L), BS (L), Cs (L)
2519 REM ** COMMING TO THE END OF THIS TAELE
2520 IF $A \&(L)={ }^{\circ} N^{\circ}$. THEN M=L-1 :GOTO 6000
2529 REM ** END OF ALL THE 630 IF AS $(L)=\circ 999$. THEN 6000
2560 NEXT L
$3010 \mathrm{M}=\mathrm{X}(\mathrm{I})$
3040 PRINT A\$(M), E\& (M), " : : INFUT Z \&
3050 IF $\mathrm{Z} \$=^{\boldsymbol{*}} \mathrm{BYE}$. THEN 9000
3060 IF $28={ }^{\circ} \mathrm{T}^{\prime}$ THEN 3100
3070 IF Z $\$=$ C $\$(M)$ THEN 3120

3090 GOTO 3040
3099 REM ** TELL HIM WHAT THE ANSWER IS.
3100 PRINT. THE ANSWER IS :;C (M)
3110 GOTO 3040
3120 NEXT I
6000 FOR $J=1$ TOM
6000 FOR J=1 TOM
6005 IF AS $(J)=9999^{\circ}$ THEN 9000
6010 FRINT A\$(J),B\$(J), " : ;:INFUT Z
6020 IF $Z{ }^{\circ}$ BYE' THEN 9000
6030 IF $\mathrm{Z}=\mathrm{C}^{\prime}$ THEN 6070
6040 IF $\mathrm{Z}=\mathrm{C}(\mathrm{J})$ THEN 6090
6050 PRINT •NOFE, ITS • $\mathrm{C} \$(\mathrm{~J}$
6060 GOTO 6010 ANSWER IS : C C (1)
6070 PRINT. THE ANSWER IS •;C\$(J)
6080 GOTO 6010
6090 NEXT J VERY GOOL... ON TO THE NEXT TAELE.
6110 PRINT : GOTO 2090
9000 PRINT :THAT WAS GOON! IF YOU ARE REAIIY FOR SOME MORE* 9010 PRINT • TYFE RUN AGAIN....ANYTIME. 9
9999 END

1. EMM 4200A, 4K Static RAMS, Ceramic A local memory boards manufacturer closed. We bought the new memory boards and took these 4200A static RAMS out. They are tested and 90-day guaranteed 100% good. Prime tested 4200A 4K RAMS \$5.50 ea., 32/\$160.00.
2. Motion Chip with Appllcation Data $\ldots \$ 4.50$ ea.
3. High Intensity Xenan Flash Tube . . $\$ 1.50$ ea.,
$10 / \$ 12.00$
4. Static RAMs MK4104 $4 \mathrm{~K} \times 1(350 \mathrm{nS})$
$\$ 4.00$ ea. Ltd. Qty.
5. LED's Mansanto MV5054-1 with mounting clips . . . 50/\$5.00.

DELTRONIKS

5151 Buford Hwy.
 Atlanta, GA 30340
 (404) 458-4690

Hobbyists, Businessmen

Use this Dealer Directory when you need a computer store. These dealers are actively looking to supply your needs in the home and business computer market.

Palo Alto CA

Systems available for immediate delivery: word processing; multiprogramming, multiuser work in process; business; medical/dental billing and accounts receivable. Software and hardware guaranteed. Byte of Palo Alto, 2233 EI Camino Real, Palo Alto CA 94306, 327-8080.

San Leandro CA

From personal computers to small systems: North Star, Horizon, DD, Sorcerer, Godbout, TRS-80, Imsai, Verbatim, terminals, printers, floppies, boards, software, books, magazines. Custom programming. Computer Store of San Leandro, 701 MacArthur Blvd., San Leandro CA 94577, 569-4174.

Torrance CA

If you're serious, come see us! Complete systems for business, special and personal applications. Packaged and proprietary software. Custom programming. Quality: Apple II, Exidy, Alpha Micro and CP/M systems. Serving southern California better. Omega Micro Computers, 3535 Torrance Blvd., Suite 10, Torrance CA 90503, 370-9456.

Los Angeles CA

Featuring: PolyMorphic, North Star, Imsai, Cromemco, Extensys, Speechlab products and Poly-88 Users Group software exchange. All products $10-20 \%$ off list. We won't be undersold! A-A-A-A Discount Computer undersold A-A-A-A Discount Computer How's, 1477 Barringt
CA $90025,477-8478$.

Denver CO

Experimenters' Paradise. Electronic and mechanical components. Computer People, Audio People, Hams, Robot Builders, Experimenters. Open six days a week. Gateway Electronics Corp., 2839 W. 44th Ave., Denver CO 80211, 458-5444.

Stamford CT

The Computer Place in downtown Stamford features Apple, North Star, DEC and others Specializing in small business applications. We are a DEC OEM and supply integrated business systems with word processing. Books, magazines, peripherals and good advice. The Computer Place, 21 Atlantic St. Stamford CT 06901, 356-1920.

Washington DC/Northern VA

Authorized Dealer: Processor Technology, Corp.; PET; Sorcerer; KIM. Word processing, data-base management, general accounting software. Books \& magazines. Parts \& accessories. Complete service center. Tyson's Computer Emporium, 1984 Chain Bridge Rd., Mclean VA 22101, 821-8333; and Georgetown Computer Emporium, 3286 M St., NW Washington DC 20007, 337-6545.

Pompano Beach FL

Business systems, personal systems, whatever the application, we can help. Consulting, programming, education and maintenance. Sergramming, education and maintenance. Support and professionalism at affordvice, support and professionalism at afford-
able prices. Computer Age Inc., 1308 N. Fedable prices. Computer Age Inc., 1308 N. Fed-
eral Hwy., Pompano Beach FL 33062, eral Hwy
$946-4999$.

Arlington Hts. IL

Lowest prices, never undersold, postpaid in USA - Teletype 43 keyboard printers-Midwest Scientific Instruments Computers -SS-50 bus peripherals -open 6-11 PM daily. Data Mart, 914 East Waverly Drive, Arlington Heights IL 60004, 398-8525.

Aurora IL

Personal and small business microcomputer systems, peripherals, software, books and magazines. Apple, North Star, Cromemco systems. Weekdays 12-8, Saturdays 10-5. Farnsworth Computer Center, 1891 N. Farnsworth Ave., Aurora IL 60505, 851-3888.

Naperville IL

Discount Prices. Creed Teletypes, optical scanners, Solid State Music products, Integrand mainframes, Vista floppy-disk systems, many other items, complete hardware and software systems. Wilcox Enterprises, 25W178-39th St., Naperville IL 60540 , 420-8601.

Dealers: Listings are $\mathbf{\$ 1 5}$ per month in prepaid quarterly payments, or one yearly payment of \$150, also prepaid. Ads include 25 words describing your products and services plus your company name, address and phone. (No area codes or merchandise prices, please.) Call Marcia at 603-924-7138 or write Kilobaud MICROCOMPUTING, Ad Department, Peterborough NH 03458 .

Worcester MA

Computer products for personal and business systems. Stocking full line of Instant Software, G2, and Personal Software for TRS-80, Apple, PET, Sorcerer. Open six days. Computer Packages Unlimited, Centerwood Terrace 244 West Boylston St., West Boylston MA 01583, 829-2570.

Garden City MI

Complete systems for business, professional and personal applications. Custom programming available. Apple II, North Star, Vector Graphic and other lines of microcomputers, software, books, components. Computer Center, 28251 Ford Rd., Garden City MI 48135, 422-2570.

Grand Rapids MI

Full-line microcomputer store. Ohio Scien-ific-Equinox - PolyMorphic SystemsDigital Systems-Codbout-DynabyteThinker Toys-Meca-North Star. Micro Computer World, 313 Michigan St., N.E., Grand Rapids MI 49503, 451-8972.

St. Paul MN

Ohio Scientific Authorized Dealer. Complete business and personal computer systems. Store hours: Mon-Sat 9-5. Custom software design and programming. To take advantage of our many years of computer experience call, write or visit: Frisch Computer Systems, Inc., 1415 Arcade St., St. Paul MN 55106, 771-7569.

St. Louis MO

Experimenters' Paradise. Electronic and mechanical components. Computer People, Audio People, Hams, Robot Builders, Experimenters. Open six days a week. Gateway Electronics Corp., 8123-25 Page Blvd., St. Louis MO 63130, 427-6116.

Oilmont MT

Business Systems for accounting and word processing. Business software for 6800 MSI Mini-Flex and North Star CBASIC. Our products save time and money. Compumont, Inc., 2708 W. Main, Oilmont MT 59466, 337-3015.

Brooklyn NY

Specialists in analyzing business needs; consulting, software and complete turnkey systems for mini/micro computers. Metro NY Micronomics Business Systems, Inc., 1061 54th St., Brooklyn NY 11219, 436-0381.

Lynbrook NY

Complete line of business computer hardware, software \& service. Design of special software to suit your business. Specialists in systems for truck routing \& restaurants. Long Island Computer General Store, Inc., 103 Atlantic Ave., Lynbrook NY 11563, 887-1500.

Rome-Utica NY

Ohio Scientific Authorized Dealer. Computers for personal, business, education and industry. Software for accounting, information management, word processing, education, business, personal and games. Comp-u-Ware, 9057 Main St., Westernville NY 13486, 827-4487.

White Plains NY
Processor Technology, North Star HORIZON, Apple II, Commodore PET and KIM; full line of books, components and peripherals; classes in our Seminar Room. The Computer Corner, 200 Hamilton Avenue, White Plains NY 10601, 949-3282.

Akron OH

We've got it all. Business systems. Personal systems. Software packages. Custom programming. Terminals. Printers. Service and books. Easy freeway access. 10 AM to 6 PM Monday-Saturday. The Basic Computer Shop, Fairlawn Plaza, 2671 West Market St., Akron OH 44313, 867-0808.

Houston TX

Experimenters' Paradise! Electronic and mechanical components for computer people audio people, hams, robot builders, experimenters. Open six days a week. Gateway Electronics, Inc., 8932 Clarkcrest, Houston TX 77063, 978-6575.

Houston TX

TRS-80 professionals! Business systems for immediate delivery. Complete business and hobby software library. Custom programming Centronics, TI, Pertec, NEC, Selectraprint. Modifications and repair of TRS-80. Houston Micro-Computer Technologies, Inc. 5313 Bissonnet, Bellaire TX 77401, 661-2005.

Belgium/France

Les meilleurs produits $\mathrm{S}-100$ à des prix sans concurrence grâce à Pulsion, votre spécialiste Thinker Toys. Documentation complète contre 32 FB ou $4,8 \mathrm{FF}$ en timbres. Pulsion, 13 ave Mahiels, 4020 Liège, (041) 42.37 .81 et 125 rue Louis Becker, 69100 Villeurbanne.

8086 Boards
CPU with Vectored Interrupts
PROM-I/O $8 \mathrm{~K} \times 16 / 16 \mathrm{~K} \times 8$ RAM

ANALOG Boards
A/D 16 Channel, 12 Bit, High Speed
D/A 4 Channel, 12 Bit, High Speed

VIDEO DIGITIZATION

Real Time
Video Digitizer and Display

S-100 Boards

Video and/or Analog Data Acquisition Microcomputer Systems

The High Performance S-100 People TECMAR, INC.
23414 Greenlawn • Cleveland, OH 44122 (216) 382-7599

Put Your PET on the Bus

PET, meet Betsi. You two were made for each other.

Michael Tulloch
103 White Cr.
Niceville FL 32578

0ne of the shortcomings of the new "appliance" computers is their lack of expandability. Yes, I know Radio Shack and Commodore will have lots of things. Still, it's going to be a while before either one has all the goodies already available for the S-100 bus. I doubt they'll ever have all of them. Regardless of the superior new bus you have, the S-100 is the standard hobby bus.

Now you can have the best of both worlds. You can buy a ready-to-run appliance computer (PET) and still have an expandable hobby computer. All you need is the Betsi (Com-
modore made Forethought Products, maker of the Betsi, stop using Petsi). The Betsi is a brother to Kimsi. It makes possible the addition of S-100 boards to your PET.

I'm going to tell you why you should get one for your PET, what it costs, what it is and how it works. l'll review building the kit version, but Betsi is also available assembled. I'll also discuss some of Betsi's limitations.

Betsi Board Features

Why should you buy a Betsi? Since it isn't made by Commodore, Betsi physically, not electrically, interferes with Commodore's proposed memory expansion. Until Betsi gets a case, its appearance warms the heart of only an avid hobbyist. It requires an external power supply.

So why buy a Betsi?... because it's beautiful. It opens up the world of "real" hobby computing. It gives the PET owner access to most of the myriad S-100 boards. It sets you free!

One good reason for buying Betsi is availability. Commodore has a memory expansion "in work"; Forethought Products is shipping now. MOS Technology RAMs are hard to get; S.D. Sales (or Godbout, etc.) memory boards can be bought over-the-counter at computer stores everywhere.

Perhaps the best reason to buy Betsi is its low cost. Commodore is selling their $4 \mathrm{~K} \times 1$ RAMs for $\$ 30$ each. You'll need eight for $4 \mathrm{~K}(\$ 240)$ and a (nonexistent) board. That compares with an S.D. Sales Expandoram with 8 K for $\$ 159$. Since Betsi is selling for $\$ 119$, you can buy

Betsiassembled.
(Courtesy Forethought)
both boards for $\$ 278$. Additional 4K blocks are $\$ 54$ with Betsi/Expandoram, while each 4 K block is still $\$ 240$ from Commodore. Thus you initially save over $\$ 200$ on an 8K memory, \$186 on each 4K expansion, while acquiring a bunch of extra features. Not a bad deal at all.

Betsi is a single circuit board. It has 14 ICs (all with sockets), four sockets for Intel 2716 PROMs and room for four S-100 edge connectors, with one edge connector furnished. Betsi is also the same size and shape as a standard S-100 board. It even has the $\mathrm{S}-100$ card edge. Thus, it can be plugged into an S-100 motherboard in place of a CPU board. Forethought is working on a PET-compatible case. And, I bet, they're working on firmware to plug into those PROM sockets.
When I opened my Betsi box I found three things: components, a circuit board and documentation. Components came packed in two plastic bags. ICs and sockets were in one bag. Hardware, resistors and PROM sockets came in the other plastic bag. The ICs and their sockets arrived in good shape.

The PROM sockets didn't fare so well. All four sockets had been squashed. Three sockets were salvageable. The fourth socket had broken pins. They sent me a replacement socket, which was also squashed, even though it was packaged in Styrofoam.

The circuit board is complete with plated-through holes, solder mask and tinned traces. Quality here certainly contributed to easy assembly. Solder bridges with these parts are hard to achieve, even on pur-

The Betsi kit. Here's all it takes to put your PET on the S-100 bus.
pose. Parts layout is logical and simple. All ICs have pin \#1 toward the nearest board edge. It's easy to check.

Documentation is outstanding. Power supply suggestions and a compatibility list were supplied with the 26 -page "assembly/operating manual." The manual has several features of note. Background on tools and techniques should see even the most rank beginner through. Absolutely everything of importance from soldering iron tips to clothes is covered. Assembly instructions may not be up to Heathkit standards, but they come close.

My only complaint here is that the board doesn't have pin 1 identified for either the ICs or the edge connector. Pictorial views show the chips with notches but not pin numbers. In the parts list several different pin ID schemes are shown. But you still have to mentally transfer position from parts list to pictorial, then to board. No mention was made of all the ICs being mounted with pin 1 toward the board's outer edge. I marked my board with a felt-tip pen.

The PET Bus

Betsi's operation is relatively simple. However, some of these operations are not obvious. Commodore's PET has a bus they call "memory expansion," which is a bit different from the S-100 or SS-50 type of bus. Commodore is oriented more toward a specific device rather than a general-purpose bus. It has
most of the things you need, but it isn't exactly versatile. It is intended only as memory expansion. Commodore plans all other devices around the IEEE bus port.

The PET bus is brought out as a 40-position two-sided card edge. All the top 40 pins are ground. (Why? Only Commodore knows.) The lower pins are assigned as shown in Table 1. There are 12 address lines (A0-A11). That only accounts for 4 K of addresses. So, there are also ten select lines (Sel 1-Sel B, no Sel 8). Thus 40K of external addressing is provided in 4 K blocks. This addressing scheme is quite different from the S-100's 16 address lines that allow addressing to 65 K .

There are eight bidirectional data lines (DB0-DB7). This follows the 6502 architecture, which uses bidirectional data lines rather than the $\mathrm{S}-100$ bus, which uses separate input and output data lines.

In addition to the address and data lines, PET has only four other signals brought out. These are: Reset (RES), Interrupt request (IRQ.), Read/Write (R/W) and one clock signal (B) .

S-100 Conversion

As a partial explanation of how Betsi uses these signals to generate S -100-compatible signals, l'll consider the last four signals mentioned above. For example, 02 comes straight through to $\mathrm{S}-100$ pin 24 as 02.02 is also used to trigger half of a 74123, which in turn provides PSYNC. PSYNCH and any of the
ten PET Sel lines combine to provide RFSH. The Betsi-generated I/O line is ORed with R/W to provide SMEMR. R/W is inverted to provide SWO. And so on. Suffice it to say that R/W,02 and the address lines are used to generate SMEMR, SWO, SINP, SOUT, MWRITE, PWR, PDBN and 01. PINT is IRQ. EXT CLR is tied high while PWAIT, PROT and UNPROT are all tied low.

PET's select lines are used to generate internal address lines A12-A15. Select lines 9, A and B are used to address the Betsi's on-board PROM sockets as well. These internal address lines are combined with the PET address lines to generate S-100 address lines A0-A15. Betsi's internal I/O line strobes a 74LS157 to clock out the A8-A15 part of the address.
The data bus is simply buffered with an 81LS95 (or 81LS97) to provide S-100 DO0-DO7. The S-100 DI lines are directly connected to the PET data lines. Table 2 lists the S-100 lines and whether or not Betsi uses them. The table is taken directly from the Betsi manual, which goes into more descriptive detail.

Compatibility

Since the PET uses a 6502 rather than one of the 8080 types of microprocessors, there are some things even Betsi can't do. As a result, not all S-100 boards will work. Forethought has a good start on which S-100 boards work with Betsi and which don't work. In fact, if you want to go S-100, you might be

1. $A O$
2. $A 1$
3. A2
4. A3
5. A4
6. A5
7. A6
8. $A 7$
9. A8
10. A9
11. A10
12. A11
13. NC
14. NC
15. NC
16. $\overline{\text { SEL } 1}$
17. SEL2
18. SEL 3
19. SEL4
20. SEL 5
21. SEL 6
22. SEL 7
23. SEL 9
24. $\overline{S E L A}$
25. SEL B
26. NC
27. $\overline{\mathrm{RES}}$
28. $\overline{\mathrm{RQ}}$.
29. $\overline{\mathrm{B} 02}$
30. $\overline{R / W}$
31. NC
32. NC
33. BDO
34. BD1
35. BD2
36. BD3
37. BD4
38. BD5
39. BD6
40. BD7

Table 1. Lower pin assignments.
better off with PET and Betsi. With an S-100 computer you may not know which boards don't work together until you get home. You get a list with Betsi (see Table 3).

Most of the boards that are in-

PET, Betsi, Expandoram and power supply.
compatible with PET/Betsi require the CPU to stop. Some want PET to stop during a programming cycle, while doing D/A conversion or during onboard refresh. PET won't wait. Thus, most dynamic RAM boards are ruled out. For me, the worst-case incompatibility is that Betsi can't use the Cromemco TV Dazzler. If only Commodore had brought out the READY line.
On the more pleasant side, there are probably more boards that are compatible than are not. All static RAM boards should work. Some boards that are believed to be compatible haven't been tested. You can help out by writing Forethought

Betsi's S-100 Bus		45	SOUT
	not used	46	SINP
$\mathrm{L}=$ tied low		47	SMEMR
$\mathrm{H}=$ tied high		48	SHLTA
		* 49	CLOCK
		50	GND
PIN	SYMBOL	51	+8V
1	$+8 \mathrm{~V}$	52	-16V
2	+16V	* 53	SSW DSB
3	XRDY	H 54	EXT CLR
4	VIo	55-66	NOT USED
5	VI1	66	$\overline{\text { RFSH }}$
6	VI2	* 67	PHANTOM
7	VI3	68	MWRITE
8	VI4	* 69	$\overline{\text { PS }}$
9	VI5	L 70	PROT
- 10	VI6	* 71	RUN
* 11	VI7	* 72	PRDY
12-17	UNUSED	73	PINT
18	STATUS DSBL	* 74	PHOLD
19	CC DSBL	75	PRESET
L 20	UNPROT	76	PSYNC
* 21	SS	77	PWR
- 22	$\overline{\text { ADDR DSBL }}$	78	PDBIN
- 23	$\overline{\text { DO DSBL }}$	79	A0
24	02	80	A1
25	01	81	A2
* 26	PHLDA	82	A6
L 27	PWAIT	83	A7
* 28	PINTE	84	A8
29	A5	85	A13
30	A4	86	A14
31	A3	87	A11
32	A15	88	DO2
33	A12	89	DO3
34	A9	90	DO7
35	DO1	91	DI4
36	DOO	92	DI5
37	A10	93	DI6
38	DO4	94	DI1
39	D05	95	DIO
40	D06	- 96	SINTA
41	DI2	97	SWO
42	D13	- 98	SSTACK
43	DI7	99	POC
* 44	SMI	100	GND

hours to do all the soldering. The board was well tinned and not oxidized so soldering was rapid. I didn't even clean the board.

My only assembly complaints are: (1) I had to drill out one filled hole, (2) the high-reliability sockets required lots of force to seat the ICs, (3) one 74LS157N was internally shorted, (4) one 24 -pin socket had broken pins. It took me less than an hour to troubleshoot the board... five hours in all, an easy evening's
work
One difference between the kit I assembled and the one you'll buy is the Betsi-to-PET edge connector. Betsi is designed to use an 80-pin, 40 position, .1 inch spaced, right angle edge connector. Two suppliers had been unable to supply Forethought these connectors when I got the kit. Forethought was holding shipment until these connectors came in. In order to complete the article, I talked

$\mathrm{S}-100$ boards known to be compatible with Betsi

Advanced Microcomputer Products-LOGOS I 8K RAM
Artec Electronics-8 to 32 K static RAM
Base 2-8K RAM, 16K RAM
Cybercom (Solid State Music) - MB6A (8K static RAM)
DRC-8K Static RAM
Dynabyte-16K RAM
Godbout Electronics-Econoram II (8K RAM)
Imsai-RAM 4A-4 (4K static RAM)
Industrial Micro Systems (IMS)-8K Static RAM
Ithaca Audio-8K RAM
Kent-Moore-4K and 8K RAM
Kent-Moore-VDM I and VDM II (video boards)
Micro Applications-4K Static RAM
Mullen-Relay/Opto-isolator Control Board
Problem Solvers Systems - 8K RAM
Processor Technology - 8KRA (8K static RAM)
S.D. Sales-4K RAM
S.D. Sales-Expandable EPROM (16K of 2708 or 32 K of 2716)
S.D. Sales-Expandoram (8 to 32 K dynamic RAM board)

Seals-4K RAM and 8K RAM
Tarbell Electronics-Cassette Interface Board
Vandenberg Data Products - 16 K Static RAM
Wameco-8K Static RAM
S-100 boards believed to be compatible with Betsi
All static RAM boards on the market
Computalker Consultants-Computalker CT-1 Speech Synthesizer
DC Hayes Associates - 80-103A Modem board
Godbout-Econoram IV (16K RAM)
Heuristics Inc.-Speechlab (speech recognition board)
Imsai-PIO (parallel I/O board)
Imsai-PROM 4 (for reading 1702A PROMs)
Ithaca Audio-16K X 8 ROM (for reading 2708 PROMs)
Matrox-ALT-2480 (24 char X 80 line video board)
Matrox-ALT-256**2 (256 X 256 video graphics board)
Szerlip Enterprises-THE PROM SETTER (1702A/2704/2708 programmer)
Wameco-RTC1 (Real Time Clock)

S-100 boards not compatible with Betsi

Most dynamic RAM boards \#3
Cromemco-8K Bytesaver (will read but not program PROMs)
\#1
Cromemco-D + 7AIO (D/A, A/D board) \#2
Cromemco-TV Dazzler (color video board)
Imsai-PIC8 (Priority Interrupt Card)
XYBEK—Prammer (PROM programmer) \#1

Notes

\#1 Tries to stop CPU in write cycle during programming cycle
\#2 Tries to stop CPU in write cycle while doing D/A conversion
\#3 Tries to stop CPU in write cycle if accessed during refresh
Table 2.
Table 3. Betsi S-100 board compatibility list.

Forethought into shipping mea kit.
Luckily, I had a wire-wrap connector that met all the above requirements except that it had straight pins. Since only a few of the top pins (all ground) needed to be bent, I bent the pins with long-nose pliers. It worked well.
I wish I could recommend this solution to everyone, but 1 waited three months to get this connector from the manufacturer. I understand that Forethought now has a supply of the correct connector and is ship. ping Betsis.

I also have a small complaint about the power transformers recommended for a power supply. They run hot! I wonder how long they'll last? Betsi and the Expandoram don't draw anywhere close to the transformers' ratings. Don't try! In any case, Forethought plans to have a power supply available that will fit into their planned case. But don't wait, building an S-100 power supply isn't that hard.

In all, the kit is easy to build and has good enough instruc-
tions to be a first-time project for the beginning kit-builder. However, better technical description of the circuit would help if troubleshooting were ever necessary.
If you use the S.D. Sales Expandoram memory board (I highly recommend it), there is one thing to note. Forethought includes a page in their manual explaining how to modify the RAM board for Betsi (this mod is similar to the mod necessary to use the RAM with a $\mathrm{Z}-80 \mathrm{CPU}$). This explanation may be misunderstood.

If you get a Revision A board (marked REV A on the printed circuit board), you should jumper IC19 socket pins 8 and 9 together on the board, not the IC pins. Remove IC19 and bend pins 8 and 9 so they don't contact the socket. The instructions sound as if the IC is jumpered.

The schematic for the REV B Expandoram board indicates that S.D. Sales has included an external jumper where needed. The new board, now in production, has a bunch of jumper op-

Turn on Betsi, turn on PET. How sweet it is!
tions that should accommodate everyone, including Betsi.

Fortunately, most S-100 boards are directly plug-in, no mods, compatible with Betsi. All static RAM boards are compatible. You just pick up a board at your local computer store (e.g., Godbout's Econoram II at $\$ 155$ assembled and tested), plug it in and watch for those new, bigger, BYTES FREE to appear at power-up. It's great!

Now that Betsi has put my PET on the bus, l'm going to get a case, a floppy disk, a modem, another video output, more memory, verbal I/O and a printer. Then l'll write an operating system for those PROM sockets. All of this is possible because of Betsi. And Betsi works great. Look out, Commodore, here comes Forethought. Look out, Z-80, here comes PET.

12" BLACK \& WHITE LOW COST VIDEO MONITOR \$149.00 LIST

- Ideal for home, personal and business computer systems
- 12"' diagonal video monitor
- Composite video input
- Compatible with many computer systems
- Solid-state circuitry for a stable \& sharp picture
- Video bandwidth- $12 \mathrm{MHz} \pm 3$ DB
- Input impedance-75 Ohms
- Resolution-650 lines Minimum IN Central 80\% of CRT; 550 Lines Minimum beyond central 80%

of CRT ref EIA RS-375
- Dimensions-11.375" high; 16.250" wide; 11.250" deep (exclude video input connector) - Weight-6.5 KG (14.3 lbs) net

AVAILABLE FOR IMMEDIATE DELIVERY!

LEEDEX Corporation ...

2300 East Higgins Road \bullet Elk Grove Village, Illinois 60007 - (312) 364-1180 • TLX: 25-4786 Generous dealer discount available

Build Your Own TTL Diagnostic Aid

Is your circuit sick? If so, this is just what the doctor ordered.

How many times have you scoped a chip or motherboard connection but couldn't quite see the pulse? Have you ever wondered whether an expected pulse had already occurred but you missed it? Isn't it frustrating trying to see a pulse in the nanosecond range when your scope isn't quite up to it?

I've eliminated these problems with a new device that you can build for less than $\$ 100$. Although it won't give you pulse duration, it will tell you whether or not a pulse has oc-
curred. TTL problems are almost always caused by pulses not being gated through a defective chip, as opposed to timing difficulties.

Unit Description

This unit is more than just a modified chip monitor; it features an external probe for use where chip clips can't go. A selector switch allows the user to select the mode and slope, while a set of hexadecimal address switches is used for the internal probe. The selectable internal probe can monitor any
one of the 16 pins of the chip, on command, electronically.

In practice, the unit is easy to use. The simultaneously displayed logical condition of all 16 pins tells the user at a glance where logic problems are originating. Mine has spoiled me to the point where the scope sits idle while the diagnostic monitor zeroes in on defective chips quickly and with accuracy.
The narrowest pulses are snagged and flagged with the internal and external logic probe. For suspected unde-

Overall view of the completed unit.
sired and intermittent noise pulses, set up the unit as a trap, and it will set the probe memory latch (Fig. 1) when the spike is detected.

If you really want super performance, use 74LS00 series chips, and your diagnostic monitor will run rings around just about any scope.

Theory of Operation

A glance at the block diagram (Fig. 2) gives a good overall view of the unit layout. This drawing coordinates the interconnection of Figs. 1, 3, 4 and 5.

Figs. 3 and 4 are the $1 / 0$ gating and control section. A common 16 -pin chip clip is connected by a ribbon cable to the inputs, pin 1 through pin 16. When wiring the 16 -pin chip clip, make sure that the dot on the clip is wired to pin 1.

Each input imposes a loading factor of only one TTL load per input pin. Even chips that are loaded to the limit of their fanout can generally handle more than their rating. I have never encountered a situation where I have overloaded a chip while using this device.

This minimal loading is accomplished by using 7404 hex inverters to monitor the test clip pins. The output of the first I/O gating inverter is connected to a 7402 gate, as well as the input of a 7404. Two stages of additional 7404 inverters are needed to restore the signal to the proper polarity to light the LED when the input pin is high. The signals on the input pins, therefore, illuminate LEDs 1

Fig. 1. Probe/mode select.

Fig. 2. Block diagram.
through 16 according to the logic level of each respective pin.
LEDs 1 through 16 are arranged on the control panel as shown in Fig. 6 to give a good simultaneous visual display of the pins' dc logic levels. While watching the dc logic levels, you may wonder whether or not you're gating that 800 nanosecond pulse through to, say, pin 5.
Fig. 5 shows the hexadecimal decoder for the internal
logic probe. This internal probe monitors any pin you want without additionally increasing the loading on the pin being monitored.

To monitor pin 5, set the bit 1 switch to a logic " 1, ," bit 2 to a logic " 0 ," bit 3 to a logic " 1 " and bit 4 to a logic " 0 ." With the switches set for a binary 5 , the hex decoder will have a low on pin 6 of D4. This is the output for $\overline{P 5}$.

Fig. 3 shows $\overline{\mathrm{P} 5}$ as being

The LM309K regulator module is mounted on the same heat sink with the 2N3055.

Fig. 3. I/O gating and control section.

NANDed with the inverted input signal from pin 5 . The result is that the signal gate 5 follows pin 5. Gate 5 goes to Fig. 1, where it is ORed through a 7402 and a 7430 to the mode select switch.

If pin 5 is normally high and
the pulse goes to ground, the mode select switch should be set on - INT (negative pulse, internal probe). Reset the probe LED and return the switch to RUN. If a pulse is detected on pin 5, the probe LED will light and stay lit until it is reset. If pin

Fig. 4. I/O gating and control section.

Fig. 5. Hexadecimal decoder (probe addressing).

5 is low, the mode select switch should be set to +INT for a positive pulse.
An external logic probe is provided for probing around the motherboard. The probe on my
unit is a length of coaxial cable with the ground shield tied to logic ground. The shield ends at the logic probe, which I made from a sleeve and a red pushtype clip, similar to the push

Fig. 6. Power supply. Control panel LED layout.
clip on a Tektronix scope probe. A black banana jack is used to provide a separate ground return (or reference ground) for the signals. It too uses a push-type spring clip to provide a good connection.
The power supply in Fig. 6 is both simple and effective. The LM309K regulator module is mounted on the same heat sink with the driver transistor (2N3055). Note that the regulator module is used here as a reference for the power transistor and carries very little of its rated load. This ensures greater dependability from the power supply, at little added cost.

I used a muffin fan to cool the unit; however, the unit doesn't really require a cooling fan. This was another addition that improved the reliability of the unit. Even under the photography lighting (90 to 100 degrees F), the cabinet felt cool to the touch due to the amount of air moving through the unit.

The logic board layout is shown in Fig. 7. The connections D2-01 through D2-14 and D3-01 through D3-14 are two 14 -pin chip sockets. Ribbon cables are used to interconnect the display board and the logic board. The ONIOFF switch occupies a position on the mode select switch, which has three unused wafers. This switch
was selected because it was on hand in my parts cabinet.

How to Operate the Unit

When setting up the unit, make sure the ground reference clip is securely connected to a dc logic point in the unit under test.

A note of caution: The logic probe and chip clip are to be used on TTL logic level signals only. Do not use these on any type CMOS, ECL or other logic families which travel above +5 volts or below ground potential.

The loading factor is 1 TTL gate per pin on the 16 -pin connector and 1 TTL gate on the external logic probe. These loading factors are not affected by the load/slope switch or the internal logic probe address switches, as the inputs are each isolated by one stage of TTL input driver.

When the 16 -pin chip clip is placed on a 14 -pin chip, make sure the dot on the clip is on pin one and that the two unused pins are 8 and 9 . If the pin for $\operatorname{Vcc}(+5)$, as well as the pin for GROUND, is dark, then the chip is not being provided with power.

Inputs that are not used will float high, but, if you monitor these, they will pulse low while the test clip is on the chip, due to the capacitance between adjacent leads in the ribbon cable

Fig. 7. PC board layout with chip locations.
(out to the test clip). Normally, this will not affect the operation of the circuit; however, if you keep getting probe hits while monitoring unused pins, it is normal and not a chip or unit defect.

My unit has a capacitor (.01 uF) from the +5 V to ground on every chip to bypass noise; it does not have as much sensitivity to hits on floating pins as when it was first tested. The bypass filtering eliminates a lot of crosstalk from the ribbon cable to the test clip. A good rule of thumb to remember here
is that the better you bypass the supply voltage to your logic, the truer your indications will be.

The pin LEDs are arranged on the control panel in a pattern shown in Fig. 6, according to pin number and location. The dc status as well as most logic changes may be viewed directly on this 16-LED array. To use the internal probe, switch the selector to + INT or -INT according to the polarity of the incoming signal pulse. + INT indicates that the polarity of the incoming pulse is positive and

Ribbon cables are used to interconnect the display and logic boards.

Table 1.
that the logic level is normally at ground potential. - INT indicates just the opposite.
To address a pin with the internal logic probe, use the four binary bit switches in Fig. 5 and Table 1. Notice that the internal
logic probe is addressed according to the pin number on the chip clip and not the chip. Pin 13 of a 14 -pin chip is addressed as pin 15, not pin 13. Note also that address "0000" is reserved for addressing pin 16 on the chip clip.

Never attempt to monitor a timing chip, such as a 74123, 8 T22 or 555. The basic timing elements of the timer will not function normally with a TTL load attached to the external capacitor and resistor pins. All you really need to operate the unit is a little common sense and a good deal of practice. The more you use it, the more at home you will be with it, until, like me, you will be hard pressed to part with it as a diagnostic aid.

MICROCOMPUTER SOFTWARE

(Floppy and hard disk systems)

- Medical Systems for Doctors
- Word Processing for Attorneys
- Membership for Churches
- Inventory for Auto Dealers
- Client Accounting for CPA's
- Listings for Realtors
- Fund Raising for Agencies
- Financial Systems for all Companies

If you are planning or developing business and accounting applications in the above areas for sale in the national marketplace, our company will review and evaluate your software to determine its suitability to the small business environment. We will arrange marketing channels for your firm, and establish acceptable royalty provisions for all of your products sold to our customers. If interested in further information about our Na tional Microcomputer Software Marketing Plan, send a list of your applications with sample report and screen layouts, and hardware specifications to:

Software Review Staff
Microtel, Inc.
-M108
P.O. Box 1098

Gastonia, North Carolina 28052 704-866-7157

6800 OWNERS

At last a real world fully addressable SS-50 control Interface. Control robots, appliances, organs, solar devices, etc. Applications limited only by your imag. ination. Easy to use with machine language as well as basic. Fully buffered board plugs directly onto motherboard and responds to any address defined by user. 2 fast relays latch data while 8 optoisolators allow handshaking capacity. Kit comes with 2 relays while other G I/O lines are left at TTL levels. Circuit board allows addition of 6 relays avallable from us at nominal cost.

Kit \$74.95
Assembled and tested $\$ 99.95$
Additional Relays $\$ 3.98$ ea
EXTENDER BOARDS
Extend both the 30 and 50 pin buses in SWTP 6800
Both for $\$ 19.95$

The Best of Both Worlds

Do you want to learn about microprocessors the right way? This article contains essential information on using and expanding the Heath ET-3400 microprocessor trainer.

Ron Dalpiaz

308 High St., Box 573
Tuscarawas OH 44682

How would you like to buy a microcomputer that teaches you microprocessor theory and interfacing techniques, is a completely selfcontained, portable unit and can be easily expanded to a full-scale developmental system? You can have the best of these features with the Heath ET-3400 microprocessor trainer and course.

Anyone involved in electronics today has no option concerning microprocessors; you must learn to work with them. Microprocessors are so intertwined with product development that a working knowl-
edge of them will weigh heavily in determining your future progress in electronics. But where do you start?

The Initial Search

This was my dilemma as an engineering technician wanting to study microprocessors in depth. To learn system development, I had to start with a ma-chine-language unit that would allow direct interaction with the microprocessor and give practice in constructing interface circuits to deal with the outside world. This eliminated from consideration prepackaged computers such as the Radio Shack TRS-80.
Primary in my considerations was a trainer backed by a good company offering excellent instructional materials and with

Photo 1. Complete Heath trainer and course.
a reputation for customer assistance if needed. Previous experience with Heathkits led to the obvious choice of their microprocessor trainer package. It has proved to be a wise investment. This article describes the trainer and course and provides full expansion details for construction of a microcomputer development system.

The Whole Package

Photo 1 shows what you get for $\$ 269.95$. The trainer kit assembles to a 6800-based microcomputer with a 1 K ROM monitor, 256 bytes of RAM and ample breadboarding space. The microprocessor course comes in two large binders and includes two cassette tapes with accompanying flip chart for audiovisual reinforcement. Interfacing experiments are performed using the many auxiliary parts supplied with the course. An extra 256 bytes of RAM is included.

The Trainer

The well-designed trainer is shown in Photo 2 with some of the interface chips installed. What sets the Heath trainer apart is its self-contained structure. You needn't carry along a separate power supply when transporting it; everything is in one neat package. Heath reserves 0.5 A of its 1.5 A , 5 volt supply for breadboard experiments and 50 mA of ± 12 volts. A standby power switch saves memory contents when
the trainer is shut down. Six 7 -segment LEDs display the status of any register or memory location upon command, and the registers can be changed at will while singlestepping through a program.
An impressive facet of the ET-3400 is its keyboardcontrolled monitor program, which greatly simplifies program debugging. If a program fails to run at full speed, you can call up the program counter, initialize it to the proper beginning address and single-step through the program. Important registers can be examined and modified after each step. The entire program can be examined in memory by stepping forward and backward through the memory locations. The provision to insert up to four breakpoints to halt the processor at selected locations facilitates debugging in fullspeed operation.

The trainer is heavily populated with buffered front panel connectors, which give access to every important microprocessor and memory control line. This is why expansion is so easily accomplished. Eight binary LEDs provide visual indication of input data, while a 1 Hz square wave provides a timing signal for linecontrolled interrupt program. ming. Direct interfacing to external memory is accomplished via a 40 -pin connector (not sup. plied), which can be installed at construction time. This connector is visible at the lower
center area in Photo 2. My only criticism is the absence of an extra ROM socket, which would allow use of a BASIC programmed ROM.

Inner Details

The ROM monitor gives the user access to many interesting routines. In addition to the RESET routine used to initialize or halt the processor, OUTCH, REDIS, OUTHEX, OUTBYT and OUTSTI provide user control of displayed information. OUTput CHaracter used in conjunction with REset DISplay allows for sequential left-justified characters to be displayed one at a time. OUTput HEX decodes the hex value contained in the four least significant bits of accumulator A to determine the segment code for a character, which is then displayed by calling an output subroutine. OUTput BYTe allows two characters to be displayed by operating on the LSB and MSB of accumulator A.

Finally, OUTput STrIng permits the display of up to six characters simultaneously on the display, and in one demonstration program an interesting ticker-tape message is run across the displays to prove the versatility of this monitor. There are numerous other utility subroutines providing keyboard-scan control and program-debugging functions that are not user accessible.

The Course

Now let's look at the microprocessor course. One of the attractive benefits is the awarding of eight continuingeducation credits upon successful completion of the course with a 70 percent or better grade on the final exam. No other company I know of offers this.

To call this a programmed course would not do it justice. Although the material is concise and flows well, it is also complete and gives an excellent introduction to microprocessors. Ten units are included, with eight being devoted to learning texts, while two contain the programming
and interfacing experiments. Each unit is divided into subsections, and each subsection contains review quizzes at the end.

After completing all subsections of a particular unit, you are instructed to perform specific experiments using the trainer and auxiliary components. These experiments relate directly to the text material. This is followed by a unit examination that reveals whether you have absorbed the material and are ready for the next unit. Interspersed throughout the course are instructions to play a section of a cassette tape and use the flip chart to acquire new information not previously covered.

The course does assume some prior knowledge of digital theory, although the only area where this is really important is in the interfacing experiments. I do feel a non-hardware type could acquire a good machinelanguage programming background, but the real value of the course lies in its total system approach, teaching both microcomputer hardware and software theory.

Unit one deals with number systems and codes and the important binary, octal and hexadecimal codes and conversions necessary for computer operation. Unit two introduces microcomputer basics using a hypothetical microprocessor, which turns out to be a stripped 6800. This unit excels in tracing the path of digital information during a routine fetch-execute cycle and breaks down a microcomputer into its constituent sections. Addressing modes are examined also. Unit three examines computer arithmetic, showing addition, subtraction, multiplication and division by microprocessor. AND and OR operations are discussed.

Unit four is an extensive treatment of programming techniques where you begin to fully realize the microprocessor's power. Units five and six are concerned specifically with the 6800 processor and cover all the possible functions of this chip. Units seven and eight deal with the interfacing tech-

Photo 2. Trainer close-up with breadboard circuitry.
niques necessary to connect the trainer to the real world. Unit nine contains the programming experiments, while unit ten deals with interfacing experiments.

The sketchy description above cannot adequately describe the scope of this course but gives some idea of what to expect. If you're looking for a good entry into the world of microcomputers and need to know them from the ground up, and want the experience of expanding the system using components of your choice, then consider this trainer. It is fully expandable and can be built into a reasonably versatile microcomputer system.

Expansion Considerations

Let's look at how just such an expansion is accomplished, including the necessary software to render the system operational.

When I completed the course, the initial fascination with blinking LEDs wore off, and I wanted more sophisticated functions. Input and output were possible using a previously obtained Radio Shack ASCII keyboard and a Zenith 12 inch black and white receiver.

My first major choice would
have to be a video interface board. I chose The Digital Group TVC-32 video and cassette interface board for its dual functions and good performance specs. A full 128 ASCII characters are possible within a 32×16 display format, while the cassette interface portion allows up to 1200 baud memory loading.

Unfortunately, the financial situation at The Digital Group is now such that future availability of TDG equipment is in doubt. Selecting alternate video and cassette interface boards should be no problem given the following information.

The ASCII information received from a keyboard is processed by the peripheral interface adapter (PIA) shown in Fig. 1 under software control of the keyboard monitor program KEYMON. This gives a sevenbit ASCII output with a 250 ns strobe pulse, all of which appear at output pins 10-17 of the PIA.

When selecting your video interface board, look for one that accepts this ASCII-coded, strobed byte and performs the necessary character storage and generation on-board. This means the interface will need
its own on-board memory to store the 512 ASCII characters (in the case of a 32×16 format) and feed them out to the CRT in the proper sequence. My experience has been limited to The Digital Group interface only, and I cannot recommend a specific alternate board at this time, but a scan of previous Kilobaud issues should help you locate a suitable board that can be used with little modification.

A serial bit stream is available for cassette memory storage at pin 10 of the PIA when the MEMDMP and MEMLOD programs are utilized. The requirements for an alternate cassette interface are minimal; the interface must have a standard serial input and the usual connections to a recorder. The MEMDMP and MEMLOD programs were written for operation at The Digital Group 1200 baud rate, and I would suggest purchasing a cassette interface that operates near this
rate. Here again, scanning back issues of Kilobaud will help you select a suitable alternate.

To display the video information, I modified a Zenith 12 inch black and white receiver for direct video input using the hints in Don Lancaster's TV Typewriter Cookbook. An even better choice would be a professional monitor if money is no problem.

Reliable memory storage at a 1200 baud rate demands a good cassette recorder, and here my choice was the Craig 2628. Speed regulation is a strong 0.35 percent, and ac biasing assures good frequency response. A digital counter, important for locating previously recorded programs, is included.

Next, I needed a good power supply to support the interface board and additional memory to be added later. One of the best small-system supplies available is the Godbout design supplying 4 A of 5 volts with

Fig. 2. Revised trainer memory map.
crowbar overvoltage protection, 500 mA of ± 12 volts and an adjustable fourth supply.

This equips you to run the interface board and up to 16 K of additional memory.

The last requirement for a good developmental system is memory. Problems arise with non-S-100 bus systems because special signals indigenous to this bus are not present with 6800-based computers, and extensive hardware is required to produce such signals.

One memory board readily adaptable to the Heath trainer is the Godbout Econoram VI providing 12 K of memory split into 8 K and 4 K blocks. Originally designed for the Heath H8 computer, this board has standard signal requirements easily provided by the interface circuitry of Fig. 1.

Only two modifications need be made to the board. First, do not install the 5 volt regulators. The Godbout power supply is pre-regulated. Instead, run a jumper from each of the regulator's (U10, 11 and 12) input pads

Fig. 1. System interface circuitry.
to their output pads. This connects the regulated 5 volts directly to the memory circuitry. Second, run a jumper from empty connector pad 46 to pin 4 of U5 and be sure switch number 8 is left in the down position. This is normally the board enable switch, but that function is controlled by the decoding circuitry of Fig. 1. Eliminate the edge connectors supplied with the kit and solder ribbon-cable connections directly to the board. The memory fits into the address slots shown on the memory map of Fig. 2, and Godbout's good documentation will aid you in setting up and using this board.

Photo 3 shows the completed system ready for programming. You may wish to build everything into an enclosure for a more professional appearance.

Interconnecting Tips

Once you've built your peripherals, interconnecting them will exercise the knowl-
edge you've gained from the Heath course. The power supply connections are easily made to the board connectors with spade lugs used at the supply to facilitate individual board removal. Fig. 1 shows the necessary interconnections including coded pin numbers for the memory board.

Circuitry within the dotted lines is the Heath-recommended PIA setup, while the rest constitutes additional hardware (supplied) necessary to accomplish interfacing and decoding. I used the PIA because of its versatility in feeding information to and from the microprocessor. It's the only device needed for keyboard, cassette and memory.

The hard-wired connections from the video interface board to the breadboarded PIA are ribbon cable terminated in an AP Products connector, allowing for quick disconnect when trainer-only use is desired. Standard audio cables are used for data input/output from cassette to interface board,

Photo 3. System ready for programming.
while two toggle switches provide send-receive switching of the audio cables. The most tedious part of the project was hand-soldering the ribbon cable to the connectors, but the results are neat and convenient in disconnecting the system.

Finishing Up

Photo 4 shows the connections made to the trainer. Notice that all ribbon cable was
cut as short as possible to avoid long-line noise problems. The connectors needed are two 929836-01 males and one 929975 female, available from AP products, Box 110Q, Painesville OH 44077 . One male connector should be installed on the trainer during construction, and eight data lines should be run from the DATA I/O buffers to the 40-pin connector pads. Instructions for doing this are

$\begin{aligned} & 00001 \\ & 00002 \end{aligned}$					NAM	MEMLOD	CASSETTE TO MEMORY
00003				*REV 0	0.1		
00004					OPT	NOP	
00005	0159				ORG	0	
00006				*PIA I	INITIALIZAT	TION	
00007	0160	CE	0004		LDX	\#\$0004	MAKE SIDE B
00008	0163	FF	8002		STX	\$8002	AN INPUT
00009				- LOAD	DATA		
00010	0166	FE	019F		LDX	\$019F	START ADDR
00011	0169	86	08	START	LDA A	\#\$08	BIT COUNT
00012	016B	B?	019E		STA A	\$019E	STORE IT
00013	016 E	4 F			CLR A		GET READY
00014	016 F	C6	01		LDA B	\#01	TEST BIT
00015	0171	F4	8002	WAIT	AND B	\$8002	START BIT YET?
00016	0174	26	FB		BNE	WAIT	IF NOT, WAIT
00017	0176	C6	60		LDA B	\#\$60	MID BIT DELAY
00018	0178	5A		LOOP 1	DEC B		COUNT DOWN
00019	0179	26	FD		BNE	LOOP 1	CONTINUE
00020	017 B	C6	01	MORBIT	ILDA B	\#\$01	AND BIT
00021	017 D	F4	8002		AND B	\$8002	1 OR 0?
00022	0180	56			ROR B		SEND TO CARRY
00023	0181	46			ROR A		STORE IN A
00024	0182	C6	40		LDA B	\#\$40	DELAY TIME
00025	0184	5A		LOOP 2	2 DEC B		COUNT DOWN
00026	0185	26	FD		BNE	LOOP 2	CONTINUE
00027	0187	7A	019E		DEC	\$019E	LAST BIT?
00028	018A	26	EF		BNE	MORBIT	CONTINUE
00029	018C	A?	00		STA A	\$00	STORE BYTE
00030	018 E	08			INX		NEXT BYTE
00031	018 F	BC	01A1		CPX	\$01A1	LAST BYTE?
00032	0192	26	D5		BNE	START	CONTINUE
00033				*SPELI	LOADED ON	N LEDs	
00034	0194	BD	FE52		JSR	OUTSTR	IN ROM
00035	0197	OE					
00036	0198	7E					0
00037	0199	77					A
00038	019A	3D					D
00039	019B	4 F					E
00040	019C	BD					D.
00041	019D	$3 E$			HLT		STOP
00042	019 E	00			RMB		
00043	019F	xx			RMB		START ADDR
00044	01 A0	xx			RMB		"* m" ${ }^{\text {nn }}$
00045	01A1	xx			RMB		END ADDR
00046	01A2	xx			RMB		"" "" ""
MEMLOD program.							

in the Heath manual.
Fig. 3 shows the pin-out of the 40-pin connector and the proper connections to the Godbout memory board.

As an aid to programming the trainer with the added memory, I have included the revised memory map shown in Fig. 2. As you can see, there is ample memory for running 8 K BASIC or extensive machinelanguage programs.

Software

Finally, you'll need some software to render your keyboard and cassette operational. The KEYMON program provides a software-controlled cursor, a clear-screen command, a back-space and an erase command and a new line capability. This was written for a 32-character-per-line interface; minor modifications will be needed for a 64-character video interface board.

The MEMDMP and MEMLOD programs, memory-to-cassette and cassette-to-memory, have timing loops that will generate a 5-second leader tone followed by the data. The trainer's LEDs will spell the word END
when memory-to-cassette operation is completed, or spell the word LOADED when cassette-to-memory operation is done. Merely let the recorder run for five seconds after the appearance of either of these words, and a tone will appear to audibly signal the end of that cassette file.

One more hint: When entering the start and end addresses of the program to be recorded or loaded to memory, make the end address one greater than the actual end address. This will ensure that the last byte is recorded.

Final Thoughts

The Heath trainer provides an excellent way to enter the world of microprocessors. Whether you are an engineering technician or hobbyist, this package is an attractive, versatile and easily expandable system for learning the technology so necessary for advancement in the world of electronics. You truly can have the best of both the machinelanguage and advanced-function computer worlds with this system.

Photo 4. System interconnections.

It's inthe bag.

The biggest and best selection of microcomputer software anywhere. And the list grows bigger every day CP/M configured for the most popular 8080/Z-80 microcomputer systems and other terrific software, now available. Call or write for our latest literature.
Lifeboat Associates, Suite 505, 2248 Broadway New York, N.Y. 10024/(212) 580-0082

Lifeboat Associates THE SOFTWARE SUPER-
MARKET

DRY TANKS VEX YANKS

BOSTON, MA-Hundreds of motorists were left stranded this weekend as area gas stations were forced to close due to and intermediate cars hardest hit while comen

The world's oil supplies may be dwindling, but there's no shortage of energy when it comes to discussing the situation at the gas pumps. The truth is, "energy" seems to have replaced "weather" as the nation's favorite topic of conversation.

The next time you have some friends over to your house, instead of just talking about the rising costs of gas and oil, play the game for all it's worth, with the Oil Tycoon program from Instant Software.

With Oil Tycoon, you and your friends will learn what it's like to explore for new oil wells, invest in research and development, operate a refinery, and handle the myriad of problems that can ruin an oil tycoon's day, such as oil spills, well fires, and blowouts. And when you have oil to sell, you can even name your price . . . and then you'll get a better appreciation of the laws of supply and
 demand.

Oil Tycoon is fun, topical, and easy to play-it's one game your friends will be talking about for weeks. And since it's Instant Software, you know you're getting a program that's designed to give troublefree performance, with detailed documentation that takes even the novice all the way from loading and running the program through learning game strategy and caring for cassettes.

So the next time you stop by your local computer store, look for the Instant Software display rack and pick up the Oil Tycoon package. It's the game everybody's talking about.

Available for the Level I 4 K and Level II 16 K TRS-80 microcomputer. Order No. 0023R \$7.95

See the ad on page 87 , for the Instant Software dealer nearest you.
Instant Software:Inc.
Peterborough, N.H. 03458-603-924-7296

MICRODESK

The perfect home for a personal or business computer MICRODESK ${ }^{\text {s }} 159.50$
$48^{\prime \prime} \times 24^{\prime \prime} \times 26^{\prime \prime}$, Shelves $23^{\prime \prime} \times 23^{\prime \prime}$, One adjustable. See it at your computer store or order it from:

COMPUTER SYSTEMS DESIGN

THE RECREATIONAL PROGRAMMER

QUALITY SOFTWARE!
TI \& HP Programmables
BASIC for most computers
GAMES•ALGORITHMS•PUZZLES STOCK ANALYSIS. AND MORE! OVER 30 PAGES BIMONTHLY!

ANNUAL SUBSCRIPTION ONLY: \$12 within USA \& APO/FPO's \$24 Foreign by AIRMAIL
Single issue for $\$ 3$ incl $\mathrm{P} \& \mathrm{H}$
 VISA and MASTERCHARGE OK! CALL (616) $343 \cdot 3546$ NOW ! Box 2571 Kalamazoo MI 49003
 ∞ の

DATA TERMINAL EQUIPMENT - FROM MICROMAIL

LA34 DECwriter IV $\$ 1,199 .{ }^{0}$

- Upper/lower case, 9×7 dot matrix - $10,12,13.2,16.5$ characters/inch
- $2,3,4,6,8$ or 12 lines/inch
- $22^{\prime \prime} \mathrm{W} \times 7$ "H $\times 151 / 2^{\prime \prime} \mathrm{D}, 25 \mathrm{lbs}$.
- 110 or 300 baud, RS 232 C serial ASCII
- Friction feed, paper width to $15^{\prime \prime}$

SOROC IQ $120 \quad \$ 795.00$

- RS 232C, upper/lower case, full ASCII
- Numeric keypad, protected fields
- Cursor keys plus addressable cur-
sor
- Auxiliary extension port

New

from DIABLO
DIABLO 1640 \$2,690.00 Recive-only $\$ 2,331.00$
High-quality daisywheel printing at 45 cps .
DIABLO 1650 \$2,779.00 Receive-only $\$ 2,419 .{ }^{0}$
Metal daisywheel printing at 40 cps .
T.I. 810 printar $\$ \mathbf{1 , 6 9 5 . 0 0}$

- Includes upper/lower case
- 150 characters per second
- RS 232C serial interface
- Adjustable forms tractor

NEC Spinwriter

Call or write for prices

To Order: Send certified check (personal or company checks require two weeks to clear) including handling* and 6\% sales tax it delivered within California.
*Handling: Less than \$2,000, add 2\%; over \$2,000, add 1\%. Everything shipped freight collect in factory cartons with manufacturer's warranty.

 for software for your microI've found that

Mad Hatter Software HAS IT ALL

PROGRAM
GALACTIC BLOCKADE RUNNER SCI-FI GAME SAMPLER R/T LUNAR LANDER MICRO-TEXT EDITOR OTHELLO III AIR RAID MICRO-CHESS BRIDGE CHALIENGER APPLE 21
STAR WARS/SPACE MAZE
RENUMBER
DISK RENUMBER
PILOT 2.0
PILOT 3.0
APPLE TALKER
APPLE LIS'NER
TIC-TAC-TALKER
SYSCOP
ANDROID NIM-2
SNAKE EGG
LIFE 2
DCV-I
MUSIC MASTER
DISK MUSIC MASTER
TRS-80 CP/M

DESCRIPTION

- an exciting space war game with graphics - 3 GAMES- LUNAR LANDER - STAR MONSTER-SPACE BATTLE - A REAL TIME LUNAR LANDER WITH GRAPHICS
- FORMAT TEXT-SAVE \& LOAD TO TAPE-OUTPUT TO PRINTER
- A STRATEGY BOARD GAME-PLAY AGAINST COMPUTER OR OTHERS
- A REAL TIME, ARCADE TYPE SHOOTING GAME IN MACH. LANG.
- PLAY CHESS WITH YOUR COMPUTER-VARIOUS LEVELS OF DIFF
- DON'T WAIT FOR OTHERS TO PLAY-YOUR COMPUTER'S READY
- BIACKIACK WITH HIRES GRAPHICS
- SCI-FI GAMES FOR THE APPLE
- RENUMBER YOUR BASIC PROGRAMS-RENUMBERS EVERYTHING;
- SAME AS ABOVE, BUT ON DISK
- the educational language. IN MACH. LANG.-INC. EDITOR
- THE DISK VFRSION OF THE AbOVE
- YOUR APPLE SPEAKS! NO NEW HARDWARE REQUIRED
- SPEFCH RECOGNITION THE EASY WAY-GREAT WITH THF TALKER
- TIC-TAC-TOE USING SPEECH SYNTHESIS AND RECOGNITION
- MAKE BACKUP TRS-80 SYSTEM TAPES THE EASY WAY
- GAME OF NIM WITH ANIMATED ROBOTS AND SOUND
- a betting game with animated snakes and sound
- I00 GEN PER MIN LIFE \& BATTIF OF LIFE W/ANIMATION \& SOUND
- PUT SYSTEM TAPES ON DISK EVEN IF IN SAME MEM AS DOS
- ENTER SHEET MUSIC-THE TRS-80 THEN CUMPILES \& PLAYS IT
- SAME AS ABOVE BUT ON DISK W/MANY SELECTIONS
- SAME AS ABOVE BUT ON DISK W/MANY SELECTIONS Software Available
- Client Billing
- a/R - a/p
- Gen. Ledger
- Inventory
- Payroll
- Mailing List
- File Handling
for
TRS-80 APPLE
\&
OTHERS
Call or Write for Details
$\mathbf{1 0 \%}$ OFF IF YOU ORDER 3 SOFTWARE PACKAGES OR MORE SEND FOR FREE CATALOG-GIVE TYPE OF COMPUTER
TO ORDER BY PHONE OR FOR DEALER INFO-CALL-(617) 682-8131
ADD 75c SHIPPING \& HANDLING • MASS RESIDENTS ADD 5% SALES TAX
MAD HATTER SOFTWARE • 900K SALEM RD • DRACUT, MA 01826

AVAILABLE FROM THESE FINE MICRO COMPUTER DEALERS

```
3PITOL COMPUTEK SYSTEM 33\% EL CAMINO AVE
SACRAMENTO CA 98821
TRSE DO SOFTWARE EXCHANGE 17 BRIARCLIFF DR
MIIFORD NH 030ss
OP AMP TECH BOOKS 1033 N SYCAMOME AVE
IOS ANGI.ES (A MOOBA
```

```
OMPUTER (ABLEVISION, IN
2617 42ND ST NW: '2 
KENNET,Y SYSTEMS
M4 BROADST
ADVANCFD COMPUTER PRODUITS
M104 - EDIA :FR
```

HOBBY WORLD FLECTRONICS
193SS BUSINESS CENTER DR *6
NORTHRIDGE CA 91324 NORTHRIDGE CA 91324
AUGUST AUTOMATION ${ }_{2} 8$ MULK ST WESTBORO MA OISEI THE CPU/ SHOP
39 PLEASANT ST 39 PLEASANT ST
CHARIESTOWN MA 02129

```
IAS ELECTRONICS LTD
BEXHILL-ON.SEA. E. SUSSEX, ENG
COMPUTER VIILAGE
931 SWW STTH AVE.
MIAMIFL 3317
L.C. sales
lom, HINCHEY AVF MNOS
```


DISCOUNT PRICES

Microcomputers \& Peripherals

Cromemco - SWTPC • Lear-Siegler Hazeltine - RCA - North Star Verbatim - Perkin Elmer and others

Fast, off the shelf delivery. Call TOLL FREE 800/523-5355

MARKETLINE SYSTEMS, Inc. -M17 2337 Philmont Ave., Huntingdon Valley, Pa. 19006 215/947-6670 • 800/523-5355

PROCESSOR TECHNOLOGY SOFTWARE
Extended Cassette BASIC
$\$ 29.00$
BASIC/5
14.00

FOCAL
14.00

TREK80 Cassette
14.00

Gamepac 1 Cassette
Gamepac 2 Cassette
Software \#1 Resident Assembler Cassette
ALS-8 Assembler Cassette
14.00

Extended Disk BASIC 29.00

Extended Disk FORTRAN
(Revision C as modified by Computer Port) 60.00
Cassette PILOT . 24.50
8080 Chess
17.00

ASSM Cassette Assembler (EDIT also needed)
14.00

EDIT Cassette Editor (for ASSM or general purpose editing) 14.00
WordWizard (Helios word processor)
MailMaster
(Helios list management program requires 64 K of RAM)
395.00

UPDATE PACKAGE: Copies of all the printed update notices that we have that pertain to Processor Technology software and hardware. This includes language updates, manual changes, controller mods, etc. One stack of papers for $\$ 15.00$
SERVICE: We do service on Sol-20 computers and Helios II disk drives, both Model 2 and Model 4 versions. We have complete diagnostic hardware and software. Let us know if we can help you. SALES: We sell Sol-20 computers and peripherals. Call us for availability and prices. Computer Port with warranty these products for 90 days.
FORTRAN UPDATE: We can update your helios FORTRAN disk to make it work. Send us your old FORTRAN disk and \$20 and we'll update it to Revision C as modified by Computer Port. If you bought your original FORTRAN from us, the update is free. With the update, you also get all current FORTRAN update documentation.
OPTIONAL PRECISION BASIC: Extended Disk BASIC for the Helios II is available in 12 different versions. 6, 8, 10, 12, 14 and 16 digit precision versions are each available in two versions. One version loads at 100 H for systems with 48 K of memory. The other version loads 12 K of BASIC in high memory with the remainder at 100 H (for 64 K systems). Send us your BASIC disk and $\$ 25$ for each version you want.
CUSTOM DRIVERS: If you have a Helios II and a printer, chances are you need a custom driver to output to your printer. Tell us what kind of printer, interface, and programs you are using. Mos custom drivers cost $\$ 35$. Call us.

ESV SOFTWARE

EC-001 ALS-8 UTILITIES

EC-003 BLOCKADE 14.00
. 1000
EC00
EC-006 DIRECT REDUCTIONLOAN . 10.00
EC-007
ACCOUNTS RECEIVABLE
EC-008
SMARTMOUTHED BLACKJACK . 25.00
EC-009 BIORHYTHM (BASIC/5) . 19.50
EC-010 BIORHYTHM (E.C.BASIC) . 19.50
EC-011 SALES IINVENTORY . 35.00
. 10.50
EC-013 DIS-ASSEM-BLER . 30.00
EC-014 MAILBOX(disk) .. 45.00
EC-015 DIAGNOSTIC II 50.00
EC-016 CONVERSION 19.50
EC-017 SINK
EC-018 AMAZN .. 19.50 19.50

ED-019 SECURITYSYSTEM (disk) 160.00
ED-021 PTDOS UTILITIES (disk) . 65.00
EC-022 BYTE-FINDER
EC-023 DISA-UTILITY 19.50

EC-024 MONEYMANAGER
..................... 40.00
ED-026 GENERAL LEDGER Ver A 400.00
EC-032 HI-ROLLER
EC-033 DIS-ASSEM-BLERII
ED-034 TEXTEDITING SYSTEM 75.00
Details on the above programs may be found in previous issues of Kilobaud. Send for complete catalog of ESV software. Our best sellers are AMAZN, MINE FIELD, DIAGNOSTICS II, and DIS-ASSEM-BLER.

NEW RELEASES From

ESV COMPUTER SERVICE
Hi-Roller: A Yahtzee styled computer dice game for use with Extended Cassette BASIC. Will support up to five players at one time. Supplied on Sol CUTS cassette tape with documentation. Only \$19.50
Dis-Assem-Bler II: Designed for Helios, similar to the ESV cassette disassembler. Automatically creates all files that will not fit into RAM due to overflow. Disassembled files may be edited and reassembled. Supplied on CUTS cassette with documentation. Uses PTDOS drivers to transfer to your disk for permanent storage. Only $\$ 40.00$
Helios II Text Editing System: Combines the best features of "EDIT," "EDT3," and other word processors/editors. Over 35 system commands permit you to move, copy, modify, seek, insert, replace, delete, and list text at will. You may create, load, get, and save all files on your Helios II disk drive. The command syntax is very easy to use and remember. Supplied on Helios compatible disk with documentation. Only $\$ 75.00$

GROUP PRICES: Computer clubs and user groups cam take ad vantage of volume purchases with Computer Port. Call us for details.

ORDERING INFORMATION: All orders must be C.O.D. or prepaid. Add 3\% for freight. Texas residents add 5% for sales tax. VISA and MASTER CHARGE accepted; give card \# and expiration date. Order by phone or mail. We ship UPS or your preference.

Computer Port is a registered service mark of General Cybernetics Corporation. Prices and specifications are subject to change without notice. All items are subject to prior sale. ESV Cassette tapes are guaranteed for one year. ESV Helios disks are guaranteed for 6 months. Advertised software has no other warranty, written or implied. Suitability for a given application is not implied, and liability is limited to software replacement or refund.

Another KIM-1 Expansion

Abstract

Packaging the KIM-1, adding a TTL serial interface and adding 24 K more memory for less than $\$ 300$ using 2114 s are the subjects covered by this KIM-1 expansion article.

John M. Blalock
3054 W. Evans Dr.
Phoenix AZ 85023

Can the MOS Technology KIM-1 be economically expanded to become a versatile high-level-language system? Is the KIM really just a "trainer board," to quote a Phoenix Byte Shop salesman? Why start with a KIM? This article will explain why I started with a KIM and attempt to answer these questions. It will explain the expansion steps I went through and describe in detail
thoughts about 2114 static RAM ICs.

Background

My interest in having my own computer dates from 1972, when I learned that my employer was paying just over $\$ 2000$ for a PDP-8 with 4 K of core. "One of these days I'Il be able to afford one!" I thought.

Time went by, and I never got the money. Along came microprocessors and Altair, but I still couldn't come up with enough. Yes, I could stretch the budget and buy an Altair, Imsai, etc.,

Photo 1. The author's KIM is in there?
the most recent addition, a 24 K static RAM memory board that cost less than $\$ 300$. Even if you don't have a KIM (or a SYM) you might get a smile and perhaps some information from reading about my problems and my
but the price of the computer itself was just a start. To do much of anything with it would require adding memory, a terminal, cassette and serial interfaces. That SWTP kit and terminal looked attractive, but it
was still over $\$ 1000$ with the terminal, cassette interface and enough memory to run BASIC.

While I was still saving money, a friend got a MOS Technology KIM-1. I started to hear regularly about all the things it could do. A charter subscriber to both Byte and Kilobaud, I had already read several articles about the KIM. It had a built-in keypad, display, ROM monitor, TTY interface, cassette interface, etc. It could be expanded without too much difficulty. Only $\$ 245$ plus a power supply and I could get started in personal computing! I could put off buying the terminal and more memory until later while still learning and having fun with the unexpanded KIM.

Getting Started

One Monday night, another amateur-radio operator listed a KIM-1 on our local two-meter swap net at a price I couldn't refuse. He needed cash badly and had mine the next day. That night I was practicing moon landings on my own computer. I played blackjack, Bandit, decoded Morse code, wrote several machine-language routines and more. Every month I looked forward to the next issue of Kilobaud to find out what new application or program someone had come up with for the KIM.

One of the first things I decided to do was to package the KIM along with its power supply. I put both in a $13 \times 17 \times 2$
inch chassis. I purposely enclosed the power transformer area on top of the chassis in an $81 / 2 \times 11 \times 6$ inch box that was large enough to also house four or five S-100-size boards. See Photo 1 for a view of my KIM. The KIM board is bolted to the right underside of the chassis using $3 / 8$-inch spacers. The keypad is readily accessible through the large cutout, and the display can be viewed through its cutout.

The next project was to add the S.D. Sales $4 K$ memory board according to the article by Bob Haas in the April 1977 Kilobaud, "KIM-1 Memory Expansion," p. 74. That done, I bought a copy of Tom Pittman's Tiny BASIC, borrowed an ASR-33 Teletype and was really computing until I had to return the Teletype. Fortunately, I belonged to a company-sponsored computer club that was putting together a CRT terminal kit that was within the reach of my pocket-book-an ASR-33 wasn't. Work on the KIM slowed until I got the terminal working.

CRT Interface

The terminal's serial interface was designed to work directly with a modem like Ron Lange's in the November 1977 Kilobaud ("Build the $\$ 35$ Modem," p. 94). Not wanting to use the parallel interface and lose the use of the KIM's monitor support of the 20 mA TTY interface, I decided to connect the TTY port to the ter-
minal's TTL serial lines. See Fig. 1 for what worked for me: wire, two resistors and one IC; it couldn't be more simple.
So now I had a working system that not only used the onboard keypad and display to run all the programs in Kilobaud and the First Book of KIM, but I was also able to write short programs in Tiny BASIC. Soon it seemed that almost every program I wrote used up all available memory before it was completely written. Also, my teenager wanted to put more games on the system, most of which required either stringhandling capability, subscripted variables or both. It was time to expand again.

Adding Even More Memory

I wrote Microsoft to ask about a full BASIC for the KIM. They referred me to Micro-Z, Box 2426, Rolling Hills CA 90274. Bob Kurtz at Micro-Z said that they had what I wanted. It required 9K bytes starting at hexadecimal 2000 just for the interpreter. 16K would be enough to handle the interpreter and short programs, but 20 or 24 K would be much better.

The January 1978 issue of Kilobaud had a good article by John Eaton on interfacing the KIM to the $\mathrm{S}-100$ bus (" Growing with KIM," p. 36). I could use his interface, get two Godbout 8K board kits and two S-100 con-
nectors, and add 16 K for just about $\$ 300$. That seemed preferable to spending about $\$ 400$ for 16 K using 4 K boards like those from Atwood. On the other hand, why not take advan-
tage of the three-for-\$375 price break from Godbout and add 24 K for about $\$ 400$? Of course, I could go with only two 8 K boards, un-modify my S.D. Sales 4 K board and have 20K

Fig. 1. Circuit to convert the KIM TTY port from 20 mA to TTL.

* 2114 adoress lines ao through ag are pins 5, 6, 7, 4, 3, 2,1, 17, 16 and 15 respectively

VCE -7442 PIN $16,74 L S 245$ PIN 20. 7411 PIN 14. 74 LS 367 PIN 16,2114 PIN 18
GND -7442 PIN $8,74 L S 245$ PIN 10,7411 PIN 7,74 LS 367 PIN 8,2114 PIN 9
SEE TABLE I FOR JI AND JZ CONNECTIONS TO KIM
Fig. 2. Schematic of the 24 K memory board design.

Photo 2. The 24 K memory board.
for about $\$ 300$ additional. This, however, would cost me the use and advantage of the programs I had from 0400 to 13FF.

Whichever way I went, I'd have to mount more S-100 connectors in the cabinet. Ever try to find a four- or five-slot S-100 motherboard? Wouldn't one of those Dynabyte 32K static RAM boards be nice? My income-tax refund wasn't that large, but then, with a board like that, I wouldn't need the motherboard. If 2114 s didn't cost so much, I could probably fit 24 K of them on one $\mathrm{S}-100$ size board. . .

I ruled out building my own dynamic memory board because of the refresh problem. There are no open slots for refresh in the timing of the 6502 used in the KIM. Apple uses dynamics, but they refresh them as part of their display updating.

I agree with others that the 2114 will be the next industry standard RAM, replacing the 2102 (see Digital Research Corporation's ads). The 2114 is fully static. It is organized as 1 K by four bits. Only two 2114s are needed for 1 K byte of memory. The main interfacing difference between the 2114 and the 2102 is that the 2114 has four bidirectional data lines. The 2102 has both a data-in and a data-out line. Since it can't be taking in data (a write operation) at the same time data is going out (a read operation), one line for each data bit is all you is need.
The 2114 is an 18 -pin IC . . compared to only 16 pins for
the 2102. You get four times the memory capacity for just over one fourth the size. Prices for 2114s, even though they were going down, were still around $\$ 10$ each in quantity. It looked as though l'd stick with 2102s.

While still trying to decide which way to go, I stopped to see Steve at Semiconductor Surplus (2822 N. 32 St., Phoenix AZ 85018) one Saturday. I spotted a sign: " 2114 s-\$8.25 each." Steve assured me that the 2114s he had were not too slow. They were 200 ns versions! I told him that I liked his price but would have to wait until they came down to $\$ 5$ each for 450 ns versions. Then they would be price-competitive with 2102s. Steve asked how many I needed. I said, "Forty eight, at least." He said, "l'll sell you 48 for $\$ 5$ each." After verifying his guarantee, and the compatibility of the 2114-2 timing with that of the KIM, I went home with $\$ 252$ worth of ICs (tax included).

Design of the 24 K Board

Now to design a circuit for a 24K memory board to interface to the KIM. I decided to skip the S-100 interface compatibility goal as being an extra expense, but did decide to buffer every KIM line to the board. Fig. 2 is the result of my design effort.

The 74LS367s and 74LS245 would provide the buffering, the 7442 s would provide address decoding and the 7411 would provide board select signals for the 24 K board and for the KIM memory. I used

7442 s instead of 74LS138s or other decoders due to their price, availability, available power and speed comparable to the other ICs. The 74LS245 is a bidirectional 8 -line Tri-state transceiver. The level on pin 1 controls the data direction. Bringing pin 19 high causes the ' 245 to act essentially as an open circuit to the data lines from each direction. It is ideal for applications such as this. The 74LS367s provide negligible load to the KIM lines, so they are permanently gated on by grounding pins 1 and 15.

The '367s constantly provide address information ($\mathrm{A}_{0}-\mathrm{Ag}_{\mathrm{g}}$) to the 2114 s . This information is ignored until $\overline{\mathrm{CS}}$, pin 8 , of the 2114 goes low. 7442 U1 divides the 64 K KIM memory space into eight 8 K blocks. Either the $8 \mathrm{~K}_{0}$ or $8 K_{7}$ signal from $U 1$ is used to enable the KIM memory onboard decoder. Enabling the KIM for just the lower 8 K will work for its RAM and the S.D. Sales 4 K addition, but the reset and interrupt vectors stored in KIM ROM are assumed to be in the upper 8 K of memory. Therefore both $8 \mathrm{~K}_{0}$ and $8 \mathrm{~K}_{7}$ are used to enable the KIM.

7442 s U2, U3 and U4 divide $8 \mathrm{~K}_{1}, 8 \mathrm{~K}_{2}$ and $8 \mathrm{~K}_{3}$, respectively, into 1 K blocks. Since two 2114 s comprise a 1 K block, each of these 7442s provides the $\overline{\mathrm{CS}}$ signal to sixteen of the 2114 s . Only one pair of 2114 s can be selected at any one time and respond to the address information from '367s.

Data will be written into or read from the selected 2114 s depending on the state of 2114
pin 10, $\overline{W E}$. This level is controlled by the KIM RAM R/W signal, just like the KIM onboard 2102s.

The 74LS245 is enabled by the signal from U5. This signal is low if the KIM is addressing the 24 K board (2000 to 7 FFF hexadecimal). Data direction through the enabled ' 245 is controlled by the KIM $\overline{R / W}$ signal, which overlaps RAM R/W, thus eliminating propagation delay concerns.

Construction

According to my calculations, I would be able to fit this circuit on one of the S-100-compatible prototype cards. I planned to wire-wrap the connections. Making an etched board was out because the number of runs would require a double-sided board. This was more than I wanted to attempt. I couldn't find an S-100 prototype board that was compatible with the circuit; 74LS245s were unavailable then due to rumored poor manufacturing yield, and 18 -pin wire-wrap sockets cost at least 50 cents each! There had to be a better way than spending $\$ 24$ just for sockets. Remember, I was trying to stay within a limited budget.
I circumvented the lack of a 74 LS 245 by substituting two 8T28s and a 7402. I got forty eight 18 -pin solder tail sockets for $\$ 12$, and a large piece of .100 inch perfboard for $\$ 7$. I borrowed a friend's wiring pencil and put it all together. See Fig. 3 for the schematic changes made to use the 8 T28s and

J1	KIM	J1	KIM	J2	KIM	J2	KIM
1	E-A	18	GND	1	E-15	18	GND
2	GND	19	E-L	2	GND	19	E-W
3	E-B	20	GND	3	E-14	20	GND
4	GND	21	E-M	4	GND	21	SPARE
5	E-C	22	GND	5	E-13	22	GND
6	GND	23	E-N	6	GND	23	SPARE
7	E-D	24	GND	7	E-12	24	GND
8	GND	25	E-P	8	GND	25	SPARE
9	E-E	26	GND	9	E-11	26	GND
10	GND	27	E-R	10	GND	27	SPARE
11	E-F	28	GND	11	E-10	28	GND
12	GND	29	E-S	12	GND	29	SPARE
13	E-H	30	GND	13	E-9	30	GND
14	GND	31	E-T	14	GND	31	SPARE
15	E-J	32	GND	15	E-8	32	GND
16	GND	33	E-Z	16	GND	33	SPARE
17	E-K	34	GND	17	A-K	34	GND

Table 1. Connections to the KIM. A-1 = Applications Connector, Pin 1; $E-1=$ Expansion Connector, Pin 1.

Photo 2 for a picture of the finished 24 K board.

The board measures $51 / 2$ by 10 inches. Ribbon cables from the KIM connectors plug onto two connectors mounted on the right side of the board. Next to them, oriented vertically, are the 74LS367s and 8T28s. The rest of the ICs are oriented horizontally in nine rows of six columns each. The top eight rows are the 2114 s . The $7442 \mathrm{~s}, 7411$ and 7402 are located in the bottom row. Power and ground are routed next to each IC socket with \#12 bare copper wire, liberally bypassed with fifty one . 01 uF disc ceramic capacitors and seven 10 uF tantalum capacitors.
My junk box provided some \#10 stranded wire, which was soldered to the power and ground buses and connected to the 5 V regulated supply. The ribbon cables were made from a 36 -inch 34 -wire jumper cut in half. Every other wire was connected to ground at the 24 K board and at the KIM to minimize the possibility of crosstalk or pickup.

The power and ground buses are held in place by \#22 wire loops to the board and by \#22 wire connections soldered to the adjacent voltage or ground pin at each socket. The sockets are attached by these same connections plus a drop of epoxy on each side of every socket. There are four holes in

Fig. 3. Modifications to use 8T28s in place of the 74LS245.
the .100 inch perfboard between each column of 18 -pin sockets... and one hole between rows.

Wiring approximately 900 joints and soldering them was tedious, but not as bad as I expected. The wiring pencil worked as advertised, but the wire was a little hard to solder. At least a 37 Watt iron is needed to melt through the insula-
tion and get a good joint. I buzzed out every connection and only found one such bad joint!

Checkout

After I found a wiring error and a few bad 2114s, the added memory worked just as I expected it would. The board draws under 3.5 A from my 5 V supply. Total cost was almost
$\$ 290$, still within budget.
Steve's guarantee on the 2114s was tested and proven good. The Micro-Z version of Microsoft's 6502 BASIC is even better than originally advertised. They've added a Hypertape SAVE routine to speed up the cassette interface and included a data-save/data-load feature. The KIM has 15183 bytes free for BASIC programs, which should be enough to hold almost all programs I care to type in. Speed is almost twice as fast as a Radio Shack TRS-80 with Level II BASIC.

Conclusions

I've spent almost as much for my system as the price of a TRS-80 with 16K RAM and Level II BASIC, but it has some features the TRS-80 doesn't. It's been fun and educational getting here. Yes, the KIM can be expanded into a versatile high-level-language system. No, it's not just a "trainer board." Now for a printer and floppy disk.

When I wrote this article, 450 ns 2114 s were being advertised in Kilobaud as low as $\$ 5.50$ each in quantities of 100 and up. 450 ns is fast enough for KIM. By the time you read this, I expect that 2114 s will be generally available for $\$ 5$ or less, so you too can break that \$100-per-8K price barrier and add more memory to your KIM.

| | up to |
| :--- | :--- | :--- | :--- |

TRS-80 COMPUTING

non profit newsletter
12 Issues For $\$ 15.00$
and now

PEOPLE'S SOFTWARE

at popular prices

- $\$ 7.50$ per tape plus $50 ¢$ postage $\&$ handling (CA residents add 45 § tax)
you want) busIness, ho Level I (indicate which
Yape 2: 76 programs, home, educational
lems" by Osbrams from "Common Basic Prob-
- Write for free TRS-80 bulletin

COMPUTER INFORMATION EXCHANGE
Box 158 San Luis Rey, CA 92068

ATTENTION

 NORTH STAR USERS
TFS—

Text formatting system. At last a powerful, fullfeatured text processor for the Northstar Disc System!! "TFS" runs with virtually any system configuration and any terminal. (Note: Uses RAM from 0 to 2000 H). Justifies left and right margins, page and chapter headings, page numbering, multi-copy, move text, search text, substitute, merge files, and append fies from disc,
and much much more! "TFS" is of great use by anyone that wants perfect text and typing with the minimum effort! Includes a 35 -page user's manual complete with examples, plus a handy quick reference guide to the "TFS" commands.

- tiny pascal: The Chung/yuen tiny Pascal includes ob. - TINY PASCAL: The ChungYuen Tiny Pascal includes ob "This is a great package!" $===\gg \$ 40.00$ This is a great package! - AAIAN 80801280 Operating System Assembler Text Editor Debugger Dynamic File Capabilities Save \& Loan mands Tiuly a powerful yet easy to use Operating Systen mands $\quad . \quad \$ 5000$ Plus much, much more, write for catalog. (Illinois residents add 5\% sales tax) (1)
P.O. Box 1628. Champaign, IL 61820

TAPE READER-COMPUTER COMPATIBLE

The Model 612 stand alone paper tape transmi ter provides a compart. desk top configuration A panel for conversion to rack mount is avail able as an option. and can be mounted to the unit A computer compatible RS 232 C interface (or TTL parallel) reads 5 through 8 level paper or Mylar rape
Dip switches provide control of baud rate. parity and stop bits. Remote start and stop can be commanded by X-on and X-off. Price is $\mathbf{3 6 1 5} 00$ in OEM quantities (100 pCs) and sample units can

ADDMASTER CORPORATION 416 junipero serra drive - A73 san gabriel, ca 91776 (213) 285-1121 telex 674770 addmaster sgab

WEB ASSOCIATES

No more monotoring the monitor! T.BEEP: beeps you when your TRS-80 is ready for its next command (Requires 9 volt b

Only $\$ 19.95$ each
CASSETTE RELAY STICKING? GET TBUFF'^ An instant and permanent fix the size of an ice cube. Check with your nearest computer retailer or order direct by calling Marketing Center (714) 559.6249 or send check or money order to:
WEB ASSOCIATES WEB ASSOCIATES
P.O. Box $60-K C$ Monrovia CA 91016 California Residents add 6% tax) W20

IBM SELECTRIC I/O PRINTER.

$\$ 395.00$

- Used 2740-2 Heavy Duty IBM
- Upper \& Lower Case
- Power Supply

Service \& Parts Manuals Included Terms: Cashier Check or Money Order Shipping Collect.

McClain \& Associates, Inc. 5104 E. 65th Street
Indianapolis, Indiana 46220
-M107
(317) 842-0526

TRS-80 disk software

DATA BASE MANAGER You can maintain a data base \& produce reports without any programming. Define file parameters \& report formats on-line. Almost use up the required 32K memory. \$49
ACCOUNT manage client accounts \& account receivable. Automatic billing \& transaction recording. 32 K req. $\$ 59$. WORD PROCESSOR Specifically designed for the TRS-80. Written in BASIC. No special hardware and text limit. $\$ 39$.

INVENTORY 9-digit key for fast on-line random access. Reports give order info, performance summary, etc. \$39.
MAIL print reports \& labels sorted by any field. Random access. special buffering technique. $\$ 35$.
KEY RANDOM-ACCESS UTIL hashing, blocking, buffering, auto I/0 error retry. \$19

MICRO ARCHITECT
96 Dothan St. \quad-м 39 Arlington, MA 02174

DO YOU OWN

A PERSONAL COMPUTER?

a PET? an APPLE II? a VIP? a Sorcerer? If so, then you need the ARESCO newstetter specifically
dedicated to YOUR personal computer system. One of the ARESCO newsletters is tallored to meet your computer's conthe tolks who purchased machines just like yours Your $\$ 1500$ buys all ten issues of the current volume of one newstetter - you won't miss a single issue
Just tell us which computer you own or which newsletter you
need:

The PAPER - for the Commodore PET The RAINBOW - for the APPLE II" The SOURCE - for the Exidy SORCERER*
The VIPER - for the RCA VIP

Send an SASE for further informalion or send SIS (cash. check, MCNISA)
 aimail postage

Box 1142
ARESCO Columbia MD 21044 301-730-5186

TRACTOR FEED
For The Model 43 TTY

AT LAST . . . an adjustable TRACTOR FEED add on for the MODEL 43 TTY. Now you can use stan dard form sizes and labels. Attaches in minutes (MC, VISA, COD accepted) NY residents add tax

MICRO WORLD

COMPUTER STORE INC. - M61 435 Main Street Johnson Cliy, N.Y. 13790 Dealer inquiries invited (607) 7989800

(6502- USERS)

If you haven't been receiving " 6502 UStR NOIES." you've already missed out on such things as a 32 K Dynamic Ram card (using 4116 's) that can be built for around $\$ 200$ and used on most any 6502 system, a pulse-type telephone dialer interface, a HEXPAWN game - where KIM learns to win, a 6522 I/O board, a 65XX disassembler, a KIM/S-100 bus interface, two oscilloscope interfaces, a couple of calculator inter aces, a Morse-code decoder program, several music programs, a real realtime clock, an A/D converter, highpeed cassette software, several debug routines, numerous games and diversions, modifications and exten sions to Microsoft Basic, Focal, several assemblers, etc, plus lots of product reviews, readers comments, and other assorted bits of practical information for you KIM, SYM. AIM and OSI users
We're the original publication dedirated entirely to the 6502 and have been around 3 years
Subscription rates for Volume 3 which includes issues \#13-\#18 is $\$ 1300-$ for N America and $\$ 1900$ elsewhere Payment must be in U S fund, ()r send a SASt (business size) for a sample

6502 USERS NOTES, POB 33093-K NORTH ROYALTON, OHIO 44133 \checkmark S105

TRS-80 FORTRAN COMPILER

by Microsoft. Includes: Editor, Macro-Assembler, Linker, and FORTRAN compiler. These are all superior pieces of software. Release the true power of your TRS-80 with FORTRAN-at 20% off. ONLY $\$ 280$. Or Purchase the Development System (Editor Macro-Assembler, Linker, Cross Reference Program) for ONLY $\$ 150$.

OKLAHOMA COMPUTER CO
118 SO. MILL STREET PRYOR OK 74361 (918) 825-4844 $\checkmark 016$

PERSONAL SOFTWARE Inc. 592 Weddell Drive Sunnyvale, Calif. 94086 © 1979 PS Inc. rP39

Duplication Services

Microsette also offers professional duplication services for Commodore PET and Radio Shack TRS-80 Level I and Level II cassettes. Our service provides mastering, quality control, all material including twopiece box, affixing of your labels or piece box, affixing of labels and shipsupplying our blank labels and ship-
ping. Prices start at $\$ 2.00$ each in 100 quantity.

SURPLUS ELECTRONICS

ASCII

IBM SELECTRIC BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED \$645.00

- Tape Drives - Cable

- Cassette Drives - Wire
- Power Supplies 12V15A, 12V25A,

5V35A Others, Displays

- Cabinets - XFMRS - Heat

Sinks - Printers - Components
Many other items
Write for free catalog
WORLDWIDE ELECT. INC. \vee W16 130 Northeastern Blvd.
Nashua, NH 03060
Phone orders accepted using VISA or MC. Toll Free 1-800-258-1036 in N.H. 603-889-7661

[^4]Fairchild 78HosKc, 5 VDC @ 5
amps regulators $\mathbf{\$ 4 . 2 9}$ ea.
Standard Power Supplies, 5 VDC, 12 amps, new $\$ 59.95$ ea.

2708 EPROMS @ $\$ 7.25$ ea. MC1488's MC1489's @ \$1.00 ea.

Send for free catalog:
Semiconductor Surplus 2822 North 32nd St., \checkmark S101 Unit 1 Phoenix, Az 85008 602-956-9423
Write or phone in your order today

DIGITAL
 PLOTTER

FEATURING THE IEEE 488 BUSS THE RS 232 SERIAL DATA INPUT INTERFACE OPTIONS
OR DIRECT FROM ANY TTL PORT

BASIC AND MACHINE LISTING SOFTWARE FURNISHED

San Francisco, CA 94101

Adult Caloric Requirements in Xitan BASIC

> Summer's still here, and it's pig-out time . . . picnics, beer, ice cream. If you're not careful, it could be heart-attack time. This program will help you constructively count calories.

Dr. John R. Cameron

PO Box 1517
Palo Alto CA 94301

An evolution is occurring in the practice of medicine in which microcomputers will be increasingly utilized, both within the medical profession and in our daily lives. In the hospi-
tal, more and more sophisticated (and potentially less expensive) patient-monitoring and analytic tools have become available due to advances in solid-state "intelligence." Moreover, increased awareness of personal health care is allowing people to take more responsibility for their own well-being. Microcomputers can play a part in this endeavor as well.

[^5]The real front line of medical care is in the home. A personal microcomputer can help you manage your life to reduce the various stresses that contribute, sometimes insidiously, to the development of many diseases. Activities in our daily lives that can be measured by a computer are presently few in number but are sufficient for a start, and their number is expanding.

What Is Being Done

One example of this microcomputer application is the use of a BASIC program to correlate insulin dosage with urine glucose output in a young diabetic as described by M. Tekulsky (December 1978 Interface Age, p. 70). Of wider applicability is the correlation of pulse rate and exercise activity described by A. Gerbens in "A Strategy for Healthy Living" (June 1978 Kilobaud, p. 32). The latter article discussed the possibility of direct pulse monitor-ing-a useful expansion in the number of parameters available to microcomputer analysis.

Your eating habits are some of the more important contributors to your health or disease. This is an area of great contention, but it is a simple fact that your weight is primarily deter-
mined by a usually predictable interaction between how many calories you eat and how physically active you are. Due to an excess of the former (especially as fats) and a distinct dearth of the latter, the average mid-dle-aged American gains a pound a year. With varying degrees of certainty, excessive weight gain has been correlated with several common diseases, including late-onset diabetes, high blood pressure and heart failure.

Some people find "counting calories" to be an essential tool in regulating their weight. The rising costs of food add to the value of efficient meal planning.
This article presents a BASIC program that allows the determination of daily caloric requirements and a diet schedule using several factors, including physical-activity level. For someone with a microcomputer, this program can be an inexpensive step toward weight control, the pursuit of which presently supports a billiondollar industry. I hope it is a step in the direction of making home health care a little easier.

The Program

The program is written in Xitan SuperBASIC. It uses 28 variables (with two-letter desig-
nations) and requires less than 4 K of memory. The program structure is generally linear and self-explanatory. There are a few lines with multiple statements separated by colons, where it is assumed that your BASIC skips to the next line if an initial conditional statement is not true.

Exotic commands have been avoided. As in many BASICs, "?" is used as the abbreviation for PRINT, and LINE INPUT waits for a string answer as INPUT waits for a numeric parameter; both of these commands utilize prompt strings. ASC(SX\$) returns the ASCII numeric value of the first character in the SX\$ string ($\mathrm{SX} \$$ and SX are independent). An apostrophe demarcates remarks at the ends of lines.

Equations in the program use your sex, age, height and weight (internal calculations are metric) to determine your basal metabolic rate (BMR-lines 390 and 430). The BMR is the number of calories your supine, awake body would use in a day at a normal room temperature. It is the basis for all calculations of caloric requirements. Certain diseases including diabetes, malnutrition, thyroid hormone imbalances and major infections can influence it, but the great majority of persons tested have the predicted BMRs. Exposure to high- or lowambient temperatures for a large part of the day will increase the BMR. Fever increases the BMR 13 percent for each degree centigrade.

The equations used were orig. inally prepared by Harris and Benedict in 1919 (as presented by E. F. DuBois, Basal Metabolism in Health and Disease, 1936). They are based on thousands of direct BMR measurements and bypass the commonly used inexact dependence of BMR on body surface area. DuBois commented on the difficult process of doing these calculations in a time before any electronic calculators. (I wonder what he would think about personal microcomputers!)

The calculation of actual caIoric requirements (line 480) uses an activity factor derived
(lines 400 and 440) from the relative proportion of time spent in various activities-most of us sit, stand or lie down most of the day. Also included is the amount of energy required to digest food, especially protein. Thus, the question about your protein intake is included. It is not a critical parameter.
Calculation of typical ideal weight for your height uses equations (lines 410 and 450) I derived from tables prepared by the Metropolitan Life Insurance Company to determine life ex-pectancy-another example of the importance of maintaining a desirable weight. Most people know what their ideal weight is, however, and this stated ideal weight is used in the diet calculations. In many people, their ideal weight is attained about the age of 25 . Other dietary information was obtained from "Recommended Dietary Allowances" by the National Academy of Sciences, 1974.

All of these calculations have some amount of uncertainty, which rises at the extremes of input parameters. Before the age of puberty and for several years thereafter, people have widely varying and proportionately higher BMRs. Therefore, this program excludes persons under the age of 19. Also, people who are underweight or overweight have different caloric requirements since the BMR is best correlated with lean body weight. Conditional statements in the program were designed to catch most improper or extreme responses.

Application

Using the program is easy. Instructions lead the user along as information is requested. A sample run is given for a pregnant woman.

Consideration has been given to the increased caloric requirements and weight gain of pregnancy; however, other factors must also be taken into account. The diet schedule in the sample run shows a caloric intake that is said to result in a loss of one pound a week for five weeks. This is true with respect to the woman's ideal

10 ?:?"Program for the Determination of Adult Energy Requirements": ? 20 ?"Responses should be a capital letter or number followed" 30 ?" by a carriage return (CR) -"
40 LINE INPUT "Are you a Female (F) or a Male (M) - CR"; SX §
50 SX=ASC (SXS):IF SX<>70 AND SX<>77 GOTO 40
60 INPUT "What is your age in years - CR"; AG
70 IF AG<19 THEN ?"Sorry, not accurate for age less than 19.": END
80 ?"Measurements may be in $\mathrm{kg} / \mathrm{cm}$ (Metric) or $\mathrm{lb} / \mathrm{in}$ (English).
90 LINE INPUT "Do you use Metric (M) or English (E) - CR"; MS\$
100 MS=ASC (MS\$) : IF MS < > 69 AND MS<>77 GOTO 90
110 INPUT "What is your Weight (in light clothing) - CR"; WT
120 INPUT "What is your Height (cm or in, w/o shoes) - CR"; HT
130 INPUT "What is your present Ideal weight - CR"; IW
140 IF MS =69 THEN WT=WT*0.454:HT=HT*2.54:IW=IW*0.454 'English to Metric
150 IF WT<40 OR WT> 100 THEN ?"Sorry, not accurate for your Weight." : END
160 IF HT<140 OR HT>200 THEN ? "Sorry, not accurate for your Height.": END
170 ?"How many hours per average day are spent doing the following:"
180 INPUT "Sleeping - CR"; A1: INPUT "Lying Down Awake -CR";A2
190 INPUT "Sitting or Standing (e.g. reading or waiting) - CR"; A3
200 INPUT "Light Activity (e.g. cooking or walking) - CR";A4
210 INPUT "Moderate Activity (e.g. active work) - CR"; A5
220 INPUT "Heavy Activity (e.g. running or climbing) - CR";A6 $230 \mathrm{TA}=\mathrm{Al}+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A} 4+\mathrm{A} 5+\mathrm{A} 6$ 'Total Daily Activity Hours
240 IF TA<22 OR TA>26 THEN ?"DOes not add up to one day." :GOTO 170
250 ?"Average diets have about 15 percent of their Calories as Protein."
260 INPUT "What percentage of your Caloric intake is Protein - CR";DP
270 IF DP<O OR DP 100 GOTO 260
$280 \mathrm{PF}=1.06+(\mathrm{DP}-15) / 100 * 0.28$ 'Protein Digestion Factor Calculation
$290 \mathrm{FC}=0: \mathrm{PC}=0: \mathrm{PW}=0$ 'Zero Female Correction Factors
300 IF SX=77 GOTO 430 'Female Calculations Follow
310 INPUT "Are you Pregnant (Y or N) - CR"; PRS
320 IF ASC (PRS) <>89 COTO 360
330 INPUT "How many weeks Postconception are you - $\mathrm{CR}^{\text {" }}$; PC
340 IF PC >10 THEN PW $=0.454^{*}$ (PC-10) : $\mathrm{FC}=300$ 'Pregnancy Correction
350 GOIO 390
360 INPUT "Are you Lactating (Y or N) $-\mathrm{CR}^{\text {" ; }}$ [CS
370 IF ASC (LC $\$$) $)=89$ THEN FC=500:GO10 390 'Lactation Correction 380 IF ASC (PRS) <>78 OR ASC (LC $)$) >78 GOTO 310
390 BM $=655+9.6^{*}$ WT+1. 8^{*} HT -4.7^{*} AG 'Basal Metabolic Rate Calculation
 $410 \mathrm{CW}=0.00192^{*} \mathrm{HT}^{\wedge} 2+0.0448^{*} \mathrm{HT}+\mathrm{PW}$ 'Calculation of Optimal Weight, CW (HT) 420 GOTO 460 'Skip Following Male Calculations to Printout Section $430 \mathrm{BM}=67+13.8 * W T+5.0 * H T-6.8^{*}$ AG

$440 \mathrm{AF}=\left(0.9 * \mathrm{~A} 1+\mathrm{A} 2+1.5^{*} \mathrm{~A} 3+2.9^{*}\right.$
$450 \mathrm{CW}=0.00177 * \mathrm{HT}^{2} 2+0.088 * \mathrm{HT}$
 470 ?:?"Your calculated Basal Metabolic Rate is"; BM+FC;"Calories." $480 \mathrm{KC}=(\mathrm{AF} * \mathrm{BM}+\mathrm{FC}) \star \mathrm{PF}$
490 ?"Your calculated average daily Caloric requirement is"; KC;"." 500 ?"Your stated Ideal Weight minus actual Weight is:"
5010 ?TAB (10) ; IW;"-";WT;"= "; IW-WT;"kg or "; (IW-WT) $/ 0.454 ; " 1 \mathrm{~b} "$

?"Typical Ideal Weight for your ${ }^{\text {He }} \mathrm{CW}$;"kg or"; $\mathrm{CW} / 0.454 ; " 1 \mathrm{~b}+/-10 \%$."
530 IF PC>10 THEN ?"This includes a";PW;"kg or";PW/0.454; "lb addition for pregnancy of "; PC; "wks."
540 IF IW-WT=0 THEN END
540 IF IW-WT=0 THEN END
550 LINE INPUT "DO YOu Wish
560 IF ASC (DI $\$$) $=78$ THEN END
560 IF ASC (DI\$) $=78$ THEN END
570 IF ASC (DI $\$$) $<>89$ GOTO 550
570 IF ASC (DIS) <>89 GOTO 550
580 ?"An of ten recormended goal for weight change is $0.5 \mathrm{~kg}(1 \mathrm{lb}) / \mathrm{wk}$.
580 ?"An of ten recormended goal for weight change is $0.5 \mathrm{~kg}(1 \mathrm{lb})$
590 INPuT "How many weeks do you wish to make the diet for";DT
590 INPUT "HOW many weeks do you wish to make the diet for"; DT
600 IF DT=0 THEN END
 620 ?"This assumes that your Caloric intake is still"; ${ }^{\text {KP }}$; " $\%$ protein." 620 ?"This assumes that your Caloric intake is still"; DP
630 IF PC>0 THEN ?"Pregnancy will alter these results."
630 IF PC
640 END
Program listing.
weight for each week during pregnancy, but this ideal weight increases one pound for each week past ten week's postconception.

So in this example, her actual weight would remain approximately constant for five weeks on a 2000 calorie diet and then rise again at one pound per week when she resumed her normal diet of about 2500 calories. It should be emphasized that during pregnancy attention is best placed on proper nutrition in consultation with your physician, rather than on weight loss.
In using this proyram, bear in mind that it is derived by taking
averages from many American adults. It is possible that your weight and caloric requirements may differ somewhat from those given, especially during pregnancy.

If you do decide to take control of your eating habits, I suggest that you exercise moderation in designing your plan. A balanced, widely varied selection of foods is likely to be more beneficial and do less damage during a lifelong diet. Fasting has intriguing psychological aspects but hardly suffices for long-term weight control. Increased activity with the same caloric intake may offer an alternative for you.

TRSpeed-up

Adding a 39¢ switch to your Level II TRS-80 can make it the fastest computer on the block.

What's faster than a speeding bullet? ... a TRS-80 running at full speed! Yes, now that you have your TRS-80 working with Level II, where else can you go but up? And this means an increase in speed!

The crystal in the TRS-80 runs at 10.64 MHz , but before the processor can get at it, the signal is divided by six by Z 56 (74LS92). The result is a mere 1.77 MHz clock going into the Z-80 microprocessor. By adding a 39Φ switch and donating about a half hour of your time, you can kick this signal up to 2.66 MHz .

This means that those long calculations will be shorter, your graphics will be faster and the cassette transfer rate will be increased to about 750 baud! What we are really doing here is dropping the divide-bysix and dividing by four instead. This gives a clock frequency of 2.66 MHz , or a speed gain of about 25 percent. This is a simple modification and should give you no trouble at all.

Modification Steps

1. Disassemble the keyboard unit by removing the six mounting screws and separating the two PC boards.
2. Locate $Z 56$ (74LS92). On the foil side of the board, cut the foil leading from pin 8 to the only plated-through hole.
3. Mount an SPDT switch onto the board, close to $Z 56$, but in a position that will not short any other foils together.
4. Solder a wire to the center connection of the switch and the other end to the platedthrough hole noted in step 2.
5. Run another wire from one side of the switch to pin 8 of Z56. (In this position, the computer will operate at normal speed.)
6. From the other side of the
switch, connect a wire to pin 14 of $\mathbf{Z 5 6}$ (this is an unused divide-by-2 gate).
7. Now run a wire from pin 2 of $Z 43$ to pin 14 of $Z 56$ (this supplies a clock/2 to our divider).

This completes the conversion, other than cutting a small hole in the cabinet so you will have access to the switch. Note: Because of the increase in speed and data transfer, your old programs will not load in at the higher rate. (That's why the switch is there.)

Well that's all there is to it. There's no reason why your computer can't be the fastest one on the block.

Scotch Brand Diskettes

2 for $\$ 10.50+50$ SHIPPING
5 for \$24.75 + 50 SHIPPING
10 for $\mathbf{\$ 4 7 . 1 5 ~ * . 5 0 ~ S H I P P I N G ~}$
Please Specify Hard or Soft, $8^{\prime \prime}$ or $51 / 4^{\prime \prime}$ Floppies
1636 Park Granada 159 Ealabasas california 31302 rA101 [213] 992-1971

OSI SOFTWARE OSI for OHIO SCIENTIFIC

25 PROGRAMS
ALL ORIGINAL ALLINBASIC
ALL RUN IN 4K ALL ON TAPE
ALL WELL DOCUMENTED
ALL AVAILABLE FOR C1, C2, AND SUPERBOARD
Our 50c catalog includes a free game listing, programming hints, POKE locations, and other stuff OSI forgot to mention.

* * * S PECIALS * * *

CHESS FOR OSI \$19.95
(nat in basic, specify system).
NEW GRAPHICS BOMBER $\$ 4.95$
AARDVARK
TECHNICAL SERVICES
1690 BOLTON, WALLED LAKE MI 48088 313-624-6316

SAVE OVER 10\%

APPLE II Starter Package:
APPLE $11-16 \mathrm{~K}$ RAM
RF Modulator
Only
With 32K RAM
Minifloppy Drive \& Controller
Only
Free! Sargon Chess Program
St
8K PET Free!!
See our complete line of business computer hardware, software and service. We design software to solve your Business Problems. Specialists in Truck Routing and Restaurant Software.

Add $11 / 2 \%$ for shipping: New York residents add 7% sales tax. Checks and Money Orders accepted. Visa \& MasterCharge-give number \& expiration date.

BIG DISCOUNTS

Immediate Delivery - brand new - full warranty NEC 5520 SPINWRITER printer term w/tractor $\mathbf{2 0} \%$ off $\$ \mathbf{2 , 6 9 5}$ DIABLO 1622 printer terminal w/tractor feed TEK TRONIX 4051 Graphics Computer System TEKTRONIX 4051 32k add-in memory COMPUCOLOR 118 k Graphics Computer Sys COMPUCOLOR II 32k add-in memory COMPUCOLOR II formatted disks
quantity discounts available

Box 41, Orange Cove, Calif. 93646 [209] 252-6146
\checkmark S107

12" BLACK \& WHITE

 LOW COST VIDEO TERMINAL
Easily interfaced with Radio Shack TRS 80

\$139.00 LIST

Will sell 6 feet coaxial cable $\$ 5.00$
Texas residents add 5% sales tax. Add $\$ 5$ for shipping and handling

One year

 limited warranty

- Ideal for home, personal and business computer systems; surveillance monitors - 12 " diagonal video monitor - Composite video inpux - Compatible with many computer
systems - Solid-state circuitry for a stable ε sharp pic. ture - Video bandwidth-12 MHz $\pm 3 \mathrm{DB}$ - Input im-pedance- 75 Ohms - Resolution- 650 lines Minimum IN Central 80% of CRT; 550 Lines Minimum beyond central 80% of CRT ref EIA RS-375 - Dimensions- $11.375^{\prime \prime}$ high; 16.250^{*} wide; 11.250° deep (exclude video input con-
nector) nector) - Weight- $6.5 \mathrm{KG}(14.3 \mathrm{lbs})$ net

Use Master Charge/Visa or send money order
Micro Products Unlimited
P.O. Box 1525, Arlington, TX $76010 \vee$ M81 817/461-8043
Dealer inquiries welcome

> FUWPR clectronics 7465 hollister suite 232 goleta, ca 9301

TRS-80 bus
 CONSTRUCTION

Home matls. and cost \$35 D/P \$39.95
Block/brick/concrete $\$ 30$
Job cost analysis D/P \$30

REALTOR PROGRAM

Files property and customers
Great for housing, rentals, investment properties, appraisal comparisons. R.A. $\mathbf{2 5 0}+1$ lisk $\$ 39.95$

SALES MANAGEMENT

ROTI/account analysis/workload analysis/ territory call scheduling. All four $\$ 39.95$

FARMING

Crop profit projection
Disk and printer $\$ \mathbf{2 0 . 0 0}$

INSURANCE

Auto quick quoter (ISO) and home insurance L2 or disk $\$ 39.95$

THE COMPUTER SHOP

Box 1264
Spencer, IA 51301 -C134

Limited by BASIC's logical structure?
Now available a
Structured BASIC Pre-Compiler

SBASIC

SBASIC supports 5 types of loop structures. 3 logical test structures, a case structure. and procedures. Written in Microsoft Disk BASIC, it produces Microsoft Disk BASIC compatible code. CP/M compatible source micro disk $\$ 50$, source listing $\$ 35$ manual $\$ 10$.

 prITS-80.
 0 .

pitch tractor fee why pall (14) wite Nit

PET: Cciiso

The Original Cassette Magazine for the Commodore PET.

- Five excellent programs come to you each month on a C-30 cassette, ready to load and run.
- Every issue has an animated "Front Cover" that
uses PET graphics to the fullest
Compare value: each issue of CURSOR includes a featured program that would cost $\$ 7.95$ to
$\$ 12.95$ elsewhere
CURSOR is mai
publish useful utility entertainment, but we also publish useful utility programs, as well as educational and business programs
With each monthly CURSOR cassette, you also eceive CURSOR notes with written instructions for the programs, and a fresh, opinionated look at our crazy industry.
CURSOR = High Quality PET Software
$\square 12$ issues only $\$ 33$ in US \& Canada 6 issues for $\$ 20$
- Sample Copy $\$ 3.95$

We Accept VISA and Mastercharge CURSOR, Box 550, Goleta, CA 93017

Our Subscribers are Happy People!
$C A T-100$ GETS
$C \rightarrow \square ?$
Complete on two S-100 boards, CAT-100 is the original 16 -color imaging system with high resolution video frame grabber. FREE CATALOG request yours today Stock.

TRS-80

MORE THAN 150 RF.II's HAVE BEEN SOLD SO FAR. WHY?
Internal speaker allows you to hear CLOAD and CSAVE * fast lorward and rewind can be head (CTR-41) * Volume confrol to adjuss wilhour aflecting data level * Two LEDS in dicate the stalus of the compoter and recorders " Simultaneous CSaVE wile two recorders *LOAD wilh either recorder * Cross tape with two recorders * Mo more pulling cables * Matches TRS 80 "look" * You MUSI be satislied or retwen the Rf. 11 and receive all youm money back, including postage! *See review in March 1979 Creative Computing. page 28^{*}

TOLL FREE 24 HOURS 7 DAYS: 800-638-2000 1-933-4801 in Maryland
Completely assembled for CTR. 41
lor CTR. 80 or CTR. 21
for kit detuct \$12. CA res. please include tor
FUUPR electronics
7465 hollister suite 2,2 goleta, ca 93017

6800 SS50 16K SYSTEMS

power

supply, fan. CPU. 16 K static RAM, and choice of I/O card..........
16K STATIC RAM BOARDS - SS50
Gold Bus connectors - DIP switch controllable addressing. write protect and enabeling of each 4 K block. Tested at 2 MHz Assembled $\mathbf{\$ 2 9 8 . 1 3}$ Above but socketted and with software control registers. TI TMS 4044's:
450 ns
250 ns
$\$ 5.00$ each
250 ns
$\$ 6.00$ each
$\$ 7.90$ each

These are factory prime chips from same shipmens
Add $\$ 10$ handling on orders under $\$ 200$

Includes "DATA/SAVE" (Added Commands to Record Both Programs And Data!)
KIM CASSETTE \& MANUAL $\$ 100.00$ prepaid
UPDATE KIT \& MANUAL FOR KIM BASIC WITHOUT MICRO-Z FEATURES . . . $\$ 35.00$ MICRO-Z COMPANY Box 2426 Rolling Hills, CA 90274
-M104

PET PERIPHERALS

(FOR OTHER IEEE 488 BUS COMPUTERS, IOO)
NEW - RS-232 INTERFACE: \$229
The TNW-2000 Bidirectional Serial Interface allows keyboard input as well as printer output. The unit provides selectable automatic PET/ASCII character conversion, "throttled" output, baud rate adjustable from 110 to 9600 bits per second. $\$ 229$ price includes power supply, cabinet, PET / IEEE cable, built-in female EIA connector, full documentation. (For software controllable RS-232 control lines, and multiple RS-232 devices. TNW offers the TNW-232D Serial Interface Price is \$369, includes power supply, cabinet, PET cable, full documentation.)

MODEM

The TNW488/103 Low Speed Modem is Bell 103 compatible, provides auto originate/answer/dial capa bilities. 75 to 600 bits per second. Interfaces to phone system via DAA. Price of $\$ 389$ includes power supply cabinet, cable to PET, full documentation, and software

TNW Corporation • (714) 225-1040
5924 Quiet Slope Drive • San Diego, CA 92120

SOFTWARE

 9K MICROSOFT BASIC INCLUDES:- Over 55 Commands - Full String Handling - 9 Digit Precision - Hypertape Built-In - 70 Page Manual the author of the widely acclaimed TRS. 80 on by Learners Manual, it explains in detail over 250 BASIC words, statements and symbols used in over 50 micros, minis and mainframes. Already in its second big printing.
360 pages. At your dealer, or send $\$ 14.95+\$ 1.35$ P \& H (CA add 6\%) to:

CompuSoft ${ }^{\text {Tw }}$ Publishing

C109 8643 Navajo Road - K9
San Diego, CA 92119

COMPUTER SPECIALS
16K Compucolor II with your choice of aither [1] 519.95 program diakette or the Compucolor programming manual! (Also includee the SAMPLER diskette free from the menufacturer.)-retail velue $\$ 1719.90$-all for $\$ 1650.00$!
16K or 32K PET graphice or businees modelspurchase the computere and get cassette drive FREE!

16K PET (or CBM)-S 995.00 32K РЕТ (or CBM)- $\$ 1295.00$ 8K PET- $\$ 745$
Tha WORLD FAMOUS KIM-1 microcomputer board-tha original 6502 developmant aystem. The beet woy poanible to REALLY IEARN The best way poaibla to REALY LEABN putere \$169.00 (regular 8178.00)
KIM-1 epecial peckage-includee the KIM-1 ae abova plue powar aupply (enough power for KIM plue 2-3 boarda], book- "Programming a Microcomputar: 6502" and "The First Book of KIM'3 8198.00 (regular 8238.00)

P.O. Box 1712, Auburn AL 36830 [formerly Plainaman Micro Syeteme] Ovarseas inquiries invited
Call Toll Free 1-800-633-8724
reguler phone number [205] 745-7735

EXPAND YOUR KIM

HDE MINIFLOPPY DISK SYSTEM FOR KIM Shugart SA-400 drives-single or dual Complete powerful [F]ile [O]riented [D]isk [S]yatem-[FODS]- flexible job-control-orientod operating system with excellent essomblylanguage aupport and high-lavel language interfece capabilities.
Microaoft BASIC, FORTH, and other lenguages availoble. Powerful lina aditor and 2 paaa aesembler-rivala the mont axpansive 6502 development ayatema available.
KIM-4 interface card-powar eupply for 3 drivee eingle drive eyatem-s895, dual drive- $\$ 1095$ FAMOUS HDE BK RAM
still available at our incredible price of 8169 ! 3 or more for 8155 apiece. WHY SETTLE FOR ANYTHING LESS THAN THE BEST? 6 MONTH LABOR AND PARTS WARRANTY! KIM-4 bue compatible pin for pin-low power-2114 etatic

THE LOGIC STORE: P.O. Box 1712, Auburn
AL 36830 (formerly Pleinsman Miero Syatams) CALL TOLL FREE 1-800-633-8724
overesee inquiries invited
reg. phone [205) 745-7735

Fantastic New TARBELL DISK BASIC Only $\$ 48.00$

- Runs on 8080,8085 , or $\mathbf{Z 8 0}$
- Searches a file quickly for a string.
- Up to 64 files open at once
- Random access.
- Assignment of I/O.
- Alphanumeric line labels are allowed.
- Read and write string or numeric data
- Unlimited length of variable names and strings.
- Procedures with independent variables.
- Number system 10 digits BCD integer or floating point.
- Chain to another program.
- Cause programs to be appended onto programs already in memory.
- Cause interpreter to enter edit mode using 15 single character edit commands.
Tarbell BASIC occupies 24K of RAM. Tarbell BASIC on CP/M* Disk \$48. Source on paper or CP/M Disk \$25.
*CP/M is a Trademark/Tradename of Digital Research.

-T11
950 DOVLEN PLACE. SUITE B CARSON. CA 90746
(213) 538-4251 • (213) 538-2254

_NEW TRS-80 CASSETTE SOFTWARE* E HARDWARE

GT-3 Chicken-A challenging game with sound effects! Hear engine idling and revving sounds. Approaching a wall at high speed, you must hit your brakes before you smash agalnst the walll Speed varies randomly. The player who comes closest to the wall without crashing wins. (Available In Level II only.) Price: $\$ 10.00$
GT-5 Moving Maze - If you don't have a lot of patience, then you had better not try this game. You must get from one side of the maze to the other side through moving gateways. A usable gateway may or may not appear soon, but when one does you had better be ready to react. Failure to react fast enough can cause you to be slammed out of existencel (Avallable In Level II only.) Price. $\$ 10.00$
Note: Sound effects games require no extra wirlng or Interfacing

HARDWARE

Finally in stock again! Back by popular demand!
HW-1 Computer and Peripheral Power Control Center-(Are you gonna love this!) i) Turns on computer, video monitor, tape recorder and/or varlous peripherals with the flick of a single switch! NO REWIRING OR EXTRAS NECESSARY! Just plug everything into this unit. 2) No need to have your vldeo monltor near a wall socket! Power center has bullt-In polarlzed receptacles which will accept the polarized video monitor plug, though the unit itself will plug into any unpolarized extension cord socket or polarized socket. 3) Power everything from a single wall socket since unit needs only one wall or extension cord socketl 4) Built-In fuse circuit protects your TRS-80 power suppiy! 5) Red L.E.D. Indicator glows when system is powered up. 6) Attractive unit takes up very littie space ($3 \mathrm{in} . \times 6 \mathrm{in} . \times 1 \mathrm{in}$.). 7) Ready to go as soon as you get it. Just plug it in. Even great for other makes of computer!
If this unit is not everything we clalm, just send it back for a full refund. Price: only $\$ 12.00$

PO Box 536 Inman SC 29349

Automated Simulations- Department B, P.O. Box 4232,

- A71 Mountain View, CA 94040
California residents please add 6% sales tax.

Clear Plexiglas Covers For the

apple computer

$\$ 25.00$ Poil paid -coo ads 8200 Calif. Res. add $\$ 1.50$ sales tax

 See which slot each card is plugged into and show the insides of your APPLE ॥ without constantly removing the cover. The slots in the back of the cover for the disc, paddle \& modulator cables are enlarged for a better fit. DEALER INQUIRIES INVITEDThese covers are 11-11/16' wide and will not fit some older apples. Check the width of your apple before ordering. If not standard, include the correct width.

Diskette File Box

$\$ 5.00$ Post Paid - cod add 52.00
Holds up to $505 \frac{1}{2}$ Diskettes. Box is $6^{\prime \prime}$ wide $\times 6^{\prime \prime}$ deep. Both ends slope $11 / 2^{\prime \prime}$. Strong woodgrained colored cardboard construction. Folding Assembly required. DEALER INQUIRIES INVITED.

Datapoint CRT Terminals \$360.00 Non-Scrolling* $\$ 410.00$ scrolling*
 Calif. Res.

 add 6% sales taxModel 3360 speeds from $300-4800$ baud, numeric keypad, cursor controls, edit. ASCII keyboard with codeable options. Green phosphor, 2480 ch lines. RS232C serial interface. Upper case characters only.
Fully tested \& guaranteed 30 days. "Includes: Shipping, Handling \& Manual.

25 START-AT-HOME COMPUTER BUSINESSES

In "Low Capital, Startup Computer Businesses"

CONSULTING • PROGRAMMING - MICRO COMPUTER OPPORTUNITIES • SOFTWARE PACKAGES • FREELANCE WRITING - SEMINARS - TAPE/DISC CLEANING • FIELD SERVICE - SYSTEMS HOUSES • LEASING - SUPPLIES • PUBLISHING - HARDWARE DISTRIBUTORS - SALES agencies - USED COMPUTERS - FINDER'S FEES • SCRAP COMPONENTS • AND MORE
Plus - ideas on moonlighting, going full-time, image building, revenue building, bidding, contracts, marketing, professionalism, and more. No career tool like it. Order now - if not completely satisfied, return within 30 days for full immediate refund.

- $81 / 2 \times 11$ ringbound • 156 pp • $\$ 20.00$

Phone Orders 901-761-9090

DATASEARCH - 040

incorporated

4954 William Arnold Road, Dept. A, Memphis, TN 38117
Rush my copy of "Low Capital Startup Computer Businesses" at \$20.
NAME/COMPANY
ADDRESS
CITY/STATE/ZIP
\square Check Enclosed

IVISA
Master Charge

Put Yourself in Control with the

APPLETHROTTLE
That's right! The APPLETHROTTLE will turn your game paddles into a speed controller.
 By simply pushing a button, you can stop your computer for as long as you want. Release the button, and your computer enters a slow-motion mode with one paddle controlling the speed. And if that isn't enough, look at these additional features:

- Plugs into any slot
- Works with machine language, Integer BASIC, and Applesoft
- Normal - slow - stop
- Use to UST, TRACE, RUN, etc.
- NO SOFTWARE to load
- Unveil program secrets

And there's more! No more multiple UST commands to view small program sections. With the APPLETHROTTLE, you'll be able to list or trace tong programs while watching your program flow in slow-motion. So get in control with the APPLETHROTTLE and order yours today!

APPLETIME, a Real Time Clock for the Apple II. Plugs directly into any slot and keeps time even when computer is off. Features $12 / 24$ Hour, BCD/ASCll data format, and AC/Crystal time base selection. Includes software examples for machine language and BASIC pro grams. Completely assembled and tested.
APT-1 Real Time Clock $\mathbf{\$ 7 9 . 9 5}$

PROTOBOARD, with over 1300 holes on 0.1 centers for designing your own circuits.
APB-1 Protoboard \$17.95

VERBATIM $51 / 4^{\prime \prime}$ DISKETTES
Soft-Sector Box of $10 \ldots \$ 34.50$ (plastic file case included)
V W29
west side electronics
P.O. Box 636, Chatsworth, CA 91311 We pay all shipping in Continental US.A. Others add 10%. California residents add 6% tax

on ALL Computers, Peripherals, Software, and ALL other fine Radio Shack ${ }^{\circledR}$ products.

Radio Shaek

Authorized Sales Center
1117 CONWAY MISSION,TEXAS 78572
(512) 581-2765
-R34

VISA ${ }^{2}$

NO TAXES on out-of-state shipments. FREE Surface delivery available in the U.S. WARRANTIES will be honorid by your local Radio Shack ${ }^{\circledR}$ store.
？？？非非！！！？？？非非 ？？？！！！非非？？？ ？DISK DRIVE WOES？MEMORY LOSS？？ ERRATIC OPERATION？

DON＇T BLAME THE SOFTWARE！

－Power Line Surges \＆Hash could be the culprit
Floppies，memory \＆processor often interact！
非 ${ }^{\circ}$ Curb damaging Surges \＆Hash with our iSOLA．非
非 ment Interaction with our unique ISOLATORS．\＃\＃
非－ISOLATOR（ISO－1A） 3 filter isolated 3－prong 非
？sockets；integral surge suppression； 1875 W total load， 1 KW any socket．．．．．．．．．．．．．．．．．．．．．$\$ 49.95$ ？
？＇ISOLATOR（ISO－2） 2 filter isolated 3－prong socket ？ banks（ 6 sockets total）；integral surge suppres－？ sion； 1875 watt total load， 1 KW load either非 bank． $\$ 49.95$ 非
非 Suppressor／Filter（SFK－31）3－prong socket； 1 KW
非•Suppressor／Fitter（SFK－33）Three 3－prong sock－非 ets； 1250 watt load． $\$ 32.50$ ！
！ExP Electronic Specialists，Inc．！ \checkmark E36

？？？非非！！！？？？非非？？？！！！非非？？？

DECWEITER WERS． DOUBLE YOUR SDEED

The ACCELEWRITER doubles the LA36 Dec－ writer＇s speed from 30 to 60 CPS．The AC－ CELEWRITER is a small molded module which plugs into the printer＇s logic board．
The ACCELEWRITER enables the Decwriter to print at its＂catch－up＂speed of 60 CPS all of the time．Wait only half the time for your Decwriter to finish its printing job．
Easy installation and easy reconversion，if ever desired．Compatible with standard Decwriter op－ tion boards．Full one－year warranty．Only $\$ 115.00$ ． Please write or phone
Illinois residents add 5% sales tax． Available NOW from

LARKS ELECTRONICS EDATA

P．O．Box 22
Skokie，Illinois 60077
（312）677－6080
-122

MAKE YOUR TRS－80 A 3－SPEED！

This simple addition allows the user to switch－select either nor－
mal operation at 1.77 MHz ，a 50% increase to 2.66 MHz ．or a 50% decrease to． 88 MHz ．Unlike other speed mods，this one may be changed AT ANY TIME without interrupting program execu－ tion．It speeds up graphics，calculations，chess programs，and CLOAD and CSAVE times，and adds a new level of difficulty to action games．The slow speed simplifies de－bugging．slows a
Level II LIST down to a legible rate，and ELIMINATES KEY． BOUNCE without software overhead．It lits inside the key－ board unit with only 4 connections to the existing circuit．Kit includes all parts．PC board，and clearly illustrated instruc－
tions．．．$\$ 24.95$ ．Assembled and tested．$\$ 29.95$

MUSIC BOARD FOR TRS－80

The MB－1 plugs directly into the expansion port of the key－ board or expansion interface and will produce any note in a 4 octave chromatic range with just one command in LevellI（may be addressed with machine code in Level I）．Includes Level II
program on cassette to demonstrate music and sound effects program on cassette to demonstrate music and sound effects
programming．Highly accurate（ 15% ）tuneable scale．As－ programming．Highly accurate（． 15% ）tuneable scale．As－
sembled board with jacks for speaker and power supply（ $\$ 4$ at sembled board with jacks for speaker and power supply（ $\$ 4$ at
Radio Shack）．．．$\$ 74.95$ ．Mounted in mahogany cabinet with speaker and power supply．．．$\$ 94.95$

CLONE II FOR LEVEL II

CLONE II is an improved machine language program for mak－ ing duplicate copies of any tape written for Level II directly from your computer．They may be SYSTEM tapes（continuous or not）or data tapes．It is not even necessary to know where the
tape loads in memory，although CLONE can tell you It also identifies unknown programs and displays every byte on the video screen in sequential order for examination．Data may be modified before copy is produced．If you can load it you can LONE it．Specify 16 K or 32 K ．．．．$\$ 16.95$

MUMFORD MICRO SYSTEMS

BOX 435－C （805）969－4557

Canadian 8K MEMORY KITS

M1－Fast Signetics 21L02－1 RAMs with 20 pages of Documentation－solder mask Low power Schottky－S－100 Bus－Full Buffering

M2－as above with DiP switch address select and Robinson Nugent iC sockets oniy \＄199．95

MEM1－WAMECO bare board as used in above kits
$\$ 39.95$
Write for info on WAMECO CPU and other S－100 bare boards．

ORTHON compurer

12411 Stony Plain Rd
Edmonton，Alberta Canada T5N3N3

TRS－80

EDIT1＇An Editor For Basic Programs
Example：C $100 / \mathrm{A}(1) / \mathrm{BD} \$(X 1) / 500$ Changes every A（ine 500 ．Other commands included 100 thru PSLAVE1＇Text printed on screen is also directed to printer．Enabled／Disabled with System A／R2 ${ }^{2}$ Accounts Receivable program．Ages accounts，prints monthly audlt trail，provides statistical comparisons to previous year sales．Contains same command features as
INVENT1 plus many additional features． （Requires Min． 1 Disk +32 K ）．．．．．．．．．．$\$ 49.95$ INVENT1 ${ }^{2}$ Designed to maintain accurate，rapld control of Inventory．The logical self prompting commands provide easy stock
manipulation．Command features－load， save，bulld，examine，update，add／sub， insert／delete，summary，worksheet \＆help． （Requires Min． 1 Disk＋32K）．．．．．．．．$\$ 49.95$ DISKETTES SCOTCH 3M．
.$\$ 3.99$
Lots of 10 －Supplied in library case．Mini－ mum order one lot．Also for Apple Computer． ${ }^{\text {i }}$ Specity memory size．Programs on cassette，for diskette ${ }^{2}$ add $\$ 4.00$ ．
Programs in Level II Basic，Modular，Easily Modifiable Form．
Add $\$ 2.00$ Shipping and Handling． 6% Sales Tax in Alabama Add $\$ 2.00$ Shipping and Handling． 6% Sales Tax in Alabama THE COMPUTER SHACK，INC．
913 Shadyview Lane • Adamsville，Alabama 35005

TRN－ $8(1)$, APIPLIE， N －100）Users．

We have a quality hard copy printer for your computer．
Control Data Model CA134－A printer－terminal has： 132 print positions，solld characters（ 64 ASCII char．）； adjustable tractor feed； $\mathbf{3 0} \mathbf{C P S}$ ；and uses parallel I／O port（Centronics Interface）．
These terminals aiso have ASCII keyboard with 10 key pad．Price $\$ 650.00$ ；includes stand，covers and main－ padance manual． 30 day warranty．FOB

MAXELL．DISKS

＂THE QUALITY ALTERNATIVE＂

Some computerists pay less but may not get A
Some computerists pay less but may not get
Shuggart or $I B M$ approved disks or shipment may not be in hermetically sealed G packages or may take many months for shipment．

MAXELL ${ }^{\circ}$ is the maker of the finest audio tape and now disks also！

```
8" SINGLE DENSITY........... 10 FOR $50.00
8" DOUBLE DENSITY .......... . . . }10\mathrm{ FOR $65.00 10 FOR \(\$ 65.00\)
```

51/4" MINI

master charge CUSTOM ELECTRONICS VISA

 238 EXCHANGE STREET CHICOPEE，MASS． 010131－413－592．4761
HOURS：Tues．to Sat．－ 9 to 5

Datapoint CRT Terminals

Fully-Assembled - Guaranteed \#3000
$\$ 495.00$
Add $\$ 15$ packing refurbished

- Shipped FOB Washington, D.C. Terms check, M.O or charge.
-90-day guarantee
- Speeds from 110 to 9600 Baud available, numeric keypad, cursor controls, ASCII keyboard with rodeable options. Green phosphor. 2572 -character lines, RS-232 serial interface. Model 3360. \$649.50, with Edit, block-transmit, search options. DATASHARE, Scrolling versions $\$ 648.50$. Manual $\$ 10$. Cable kit \$9.95. M-33 ASR Teletype \$895, KSR \$725; All M-28, 35 components available, also Modems, readers. QUANTITY DISCOUNTS AVAILABLE. Leasing, service at low prices.

TELECOMMUNICATIONS SERVICES CO. Box 4117, Alexandria, Va. 22303 - T26 703-683-4019 / TLX 89-623

ITTECDLDR COTIPUCDLDR

SALES • SOFTWARE
 SERVICE - UPDATES
 -BUY-SELL-SWAP-

WHOLESALE-to dealers
UPDATE-your machine to the latest disk configuration
SERVICE-providing local and west coast service for east coast firms
for east Coast firms
SOFTWARE-over 500 programs in our library USERS GROUP-join to purchase low cost software
MEMBERSHIP \& BULLETINS- 1 year- $\$ 25$ PROGRAM EXCHANGE-5 to 10 programs for each acceptable submission
S. P. ELECTRONIC SYSTEMS

5250 Van Nuys Blvd. Van Nuys CA 91401 Phone 213/788-8850

Pygmy Programming
 * PRESENTS *

APPLE BUSINESS SOFTWARE

 APPLE-DMS® $\quad 48 \mathrm{k}$ \& disk required $\$ 49.00$ Apple data management system... the ultimate in freeform systems. You define the name and length of rields to thousands of records at once with the included sort/edit features! The print format is also defined by the user for custom report generation. Uses include mailing labels, inventory, personnel data and other record keeping functions.APPLE-SCRIBE-2© disk or cassette $\$ 49.00$ Text processor . . . the perfect addition to any business system. This is a non-line oriented editor that allows upper and lower case letters, any width paper and any length page. Included features are automatic headings. date and page number, right hand justification, search with universal or individual replacements. Text is stored on disk or cassette for easy retrieval.
P.O. Box 3078 - Scottsdale, AZ 85257

- P55

Install a clock control board and CLOAD, CSAVE, and run programs 50% faster without the use of switches.

Basic stalement OUT 254,1 changes the TR5 80 10 a laster 2.66 mhz
 ware.
Were. E Esy to install $1.5^{\prime \prime} \times 2.5^{\prime \prime}$ board lits neatly inside the keyboard unit. Works with or wilhout the TRS-80 expansion inferlace.
Allows easy loading and speedup of your present Basic and machine language (system) programs.
TRS- 80 avtomatically sets to its normal operaling speed when power is lirs apolied.
Speed changes will nol distorb menery-no program crashes.
"This is not a kit. The board comes fully (and beautifully!) assembled"... CIE TRS-80 Bulletin, May 79

ASSEMBLED and TESTED-\$24.95 ppd BILL ARCHBOLD
106 SNYDER DR
MATHER , CA 95655

1802

EXTENDED MONITOR

- Self relocating to any page boundary. - Requires 1 K of RAM or ROM plus stack - User may design his own I/O routines. - 25-page user manual with hex listing.
- Supports user relocatable programs.
- Kansas City cassette routines.

No tone leaders or trailers needed
Simple interface requirements.
Check sum error detection.
Enables sequential file processing. - ASCII to hex and hex to ASCll routines. - Print character strings, registers, mem ory.

- Examine/alter memory, load paper tape.
- Much more.

OP1802-1 K.C. tape*** $\$ 20.00$ OP1802-2 Paper tape*
$\$ 18.00$

BENCHMARK COMPUTER SYSTEMS

17 Hanover Place
Hicksville, L.I., N.Y. 11801

THE CLMMPUTER EXCHANIGE

2217 Freeland Way -C146 Dallas, Texas 75228

BUY / SELL EXCHANGE

HARDWARE SOFTWARE

NEEDED INFORMATION

MAILED FIRST CLASS MONTHLY

 ONE YEAR ONLY $\$ 5.00$CampuLaver:

COVER YOUR INVESTMENT

Maxımum protection from dust and spills through durable, washable vinyt Available in

 Elecira Blue. Saddle Tan, and WhitThe $\begin{array}{ll}\text { TRS-80 (Keyboard only) } \$ 795 \text { VIDEO DISPLAY } \$ 99^{\circ} \\ \text { CASSETTE } \$ 3.95 & \text { COMPLETE SET } \$ 199^{\circ}\end{array}$
-With expansion interface add $\$ 300$.
(Pictured above with expansion intertace)
PET $\$ 1995$
APPLE II DISK $\$ 3.95$
SORCERER $\$ 9.95$ TRS-80 DISK $\$ 395$ APPLE II $\$ 995$ (Keyboard only)
Send check or money-order to. CompuCover \sim C122

Dr. Daley presents

The finest in software for PET

PILOT-A second high level language for the PET. With sample program and documentation.
\$12.95 ppd.

- 043 Dr. Daley 425 Grove Ave. Berrien Springs, MI Ph. (616) 471-5514 Sun. thru Thurs. noon to 9:00 p.m. eastern time.

\dventure International
 Presents

"ADVENTURES for the TRS-80""
Talked about at NCC '79, the Cover Feature of the August ' 79 CREATIVE COMPUTING, raved about by 80 SOFTWARE CRITIQUE and others, ADVENTURE by Scott Adams has rapidly become a classic, each ADVENTURE is a 16K machine language program. Designed for you, the Armchair Adventurer! See for yourself what everyone is talking about and order a copy of Adventure \#1 or \#2 today from our many fine dealers or order directly from:

ADVENTURE INTERNATIONAL

> Box 3435, Dept. K

Longwood, Florida 32750 (305) 862-6917

Each Adventure, only \$14.95, Visa and Mastercharge accepted, COD prices 10\% higher.

Dealer Inquires Encouraged
*Trademark of Tandy Corp.

- A102

Tarbell 32K RAM Memory

$\star \mathrm{S}-100$ BUS $\star \quad \star 300 \mathrm{~ns} \star \quad \star$ STATIC MEMORY \star $\star 9$ REGULATORS PROVIDE EXCELLENT HEAT DISTRIBUTION \star
$\star E X T E N D E D$ ADDRESSING (Bank Switching) \star \star LOW POWER REQUIREMENT *
*PHANTOM LINE \star
$\star 20$ PAGE OPERATING MANUAL * \star FULL 1-YEAR WARRANTY \star
FULLY ASSEMBLED AND TESTED \$625.

$$
\text { SAME BOARD WITH ONLY } 16 \mathrm{~K} \text { INSTALLED \$390. }
$$

Please send check or money order. No CODs or credit will be accepted on this item. Califor nia residents please add 6% sales tax.

- P49

Fexitincl

950 Dovlen Place • Suite B • Carson, Calif. 90746
(213) $538-4251$
(213) 538-2254

TRS-81

 tuene your Favorite houseplants

TIRED OF PLAYING GAMES? MAKE YOUR TRS-80 WORK FOR YOU! ALL NEW SOFTWARE CONTAINS BASIC INFORMATION ON THE CHARACTERISTI COMMON AND BOTANICAL NAMES, TYPE PROPAGATION, TEMPERATURE AND HUMID SOIL AND FERTILIZER, DISEASES AND OF 100 FAVORITE HOUSEPLANTS.
100 FAVORITE HOUSEPLANTS
FOR TRS-80 4K LI....... $\$ 12.50$
4K LII...... \$12.50
(Idaho Residents Add 3\% Sales Tax)

MAKE CHECK OR MONEY ORDER PAYABLE TO:

RONDURE COMPANY

SPECIAL	GE TERMINET
Printer for your Microcomputer	300 PRINTER

Will run on serial RS232 port of most micros including TRS-80.

Pin feed-9" paper

- Receive only
- ASCII code
- RS-232 Interface
- 30 CPS
- Upper \& lowercase
- Shipping wt. 75"
(used) (good working condition)

ASCII Keyboard
(used) with enclosure
$\$ 35.00$

DATEL SELECTRIC (IBM Selectric Mechanism) with ASCII SELECTRIC

Parallel output only-15 characters per second ac cepts 7 blt ASCII paralle w/strobe \& prints on Selec tric. The unit still works a mody.

Specifications:
Size: $21^{\prime \prime}$ Wx21 ${ }^{\circ}$ Ox8 $8^{\circ} \mathrm{H}$. - Power Input 115 Volt

Weight: 54 lbs. (Shipping welght 65 lbs.)
-15" Carrlage

- 15 CPS

Half Duplex
132 Print Positions, 10 Pitch
$\$ 900.00$

$\$ 450.00$

ORDERING INFORMATION:

We ship the same day we receive a certified check or money order
Texas residents add 5% sales tax. Please call if you have a question.
Write for our CATALOG of many parts, terminals, printers, etc.
All items subject to availability. Your money returned if we are out
of stock.
SHIPPING INFORMATION:
Modems: $\$ 2.00$ each; 2 for $\$ 4.00$ UPS.
Large Items \& Parts: Specify Freight or Air Freight Collect
Foreign Orders: Add appropriate freight or postage
We now take Master Charge and Visa orders, Specify full number, bank number and expiration date.

Soroc 120 \$790	TRS-80 Level II	24 HR. ORDER SERVICE
Soroc 140 \$1260	16K, exp. I/O \$1199	Ph (219) 293-4316 Mon-Sat
Hazeltine 1400 $\$ 685$	32K, exp. I/O \$1270	\square
Hazeltine 1410 \$780		-
Hazeltine 1500 \$999	Sorcer-Exidy	PO. Box 621 -m94
Intertube \$764	16K system \$1095	
Perkins-Elmer/Bantan. . \$775	32K system \$1270	Bristol, IN 46507

Comprint 912. \$529	Cromemco	HANDIING; Terminals add 3\%if for
Heath WH-14 \$749	ZPU(kit) \$279	shipping or freight collect
Centronics 779 $\$ 995$	Z-2(kit) \$545	TO ORDER: Send certified check or
Dec LA36 $\$ 1345$	Z-2D(kit) \$1295	M.O. For personal or
Nec 5510. \$2455	System 2 \$3399	business allow 2 weeks
Qume Sprints/45 . . . \$2999	System 3 $\$ 4799$	INDIANA RESIIDENTS add 4\%

CHESS * BACKGAMMON * MORE!

NEW MACHINE LANGUAGE GAMES!
Z-CHESS for 16K Level II
Play the olcesic game of CHESS veing the TRS-80 graphice. Soven levele of difficulty (up to eix levale of "look ahead") provide a ohallenging game for all. Alpha-Beta pruning and move eorting are employed to keop response timee to a minimum. SETUP mode allowe the board to be arranged ae deeired. Playe all moveeinoluding CASTLING and EN PASSANT oaptures. Numbered equares eimplify move input. Poesibly the faeteet good etrategy cheee game availablel \$17.95

BACK-40 for 16K Level II

A euperior opponent which makee exteneive vee of the TRS-80 graphice to dioplay a regulation etyl- BACKGAMMON board of unrivaled quality and olarity-including the dioal BACK-4D DOUBLES if it etande a good ohanoe of winning-which it vevally doeal Every feature of a regulation BACKGAMMON match ie inoluded-oven keope ecoral \$14.95
DR. CHIPS for 16K Level II
A faeoinating program based on the famove "DOCTOR" and "ELIZA" programe. Simply "TALK" (or, "TYPE") to your computor-DR. CHIPS will analyze your eentencee and "TALK" baok to you-immediatelyl Although DR. CHIPS' reeponees should not be takon eariouely, he is the ultimate oomputer introduotion for the family and friende-and a euper "conversationalist" at partieel \$14.95

Immediate ehipment by firot olaee mail - Toxae ree. add 5\% Order by mail or phone (VISA. MaetorCharge aooopted) froms The Software Association
P. O. Box 58365

Houston. Texas 77058 -s97
Phone: (713) 482-0883

TRS-80 OWNERS MINI FLOPPY DISK DRIVES \$339.00

Includes MPI drive case and power supply.
2 Drive cable $\$ 25.00$
4 Drive cable $\$ 35.00$

THE ELECTRIC PHONE II

Turn your TRS-80 into an automatic phone dialer with this ingenius program. Contains all hardware for a 5 minute installation. Requires level $2,16 \mathrm{k}$.

Tape version \$14.95
 Disk version \$19.95

REAL TIME GAMES PACKAGE

By Michael E. Dreiger
3-D REAL TIME LUNAR LANDER
Displays horizontal and vertical graphics and all flight parameters. Land on any of the 9 planets. Very challenging!!! REAL TIME STAR TREK
Commands available to battle the Klingons are warp, phasors, photon torpedoes and impulse engines. Has complete actionpacked graphics of the quadrant you are presently in, along with a sector map. No doubt the best action Star Trek game available.

Both of the above on cassette for level 2, 16k. \$14.95

EXPANDED MAILLIST

By Harry Hopkins
Utilizes sequential files for rapid access in sorting into labels or lists. Full select and suppression capabilities with up to a 10 digit key. Multiple file and full update capability. Stores 1200 names on a clean diskette in files of 200 names on a 32 k system and 350 names on a 48 k system, redundancy check and much more.

Maillist program on diskette with manual $\$ 59.95$

Send for free catalog.

2915 F $1 / 2$ Road
COST EFFECTIVE
master charge COMPUTER SERVICES

SUPER
 SPECIAL
 Apple II 16K $\$ 999.99$

(8) 16 K Rams
(10) Verbatim Disks

Axiom 820 Microplotter
Axiom 800 Printer
. \$65.00
. $\$ 27.00$
$\$ 699.99$
$\$ 385.00$

TTY Model 43 W/RS232 Interface Integral Data Products

IP-125
IP-225 with all options
$\$ 1099.00$
. $\$ 739.00$
The Computer Stop 16919 Hawthorne Blvd., Lawndale, CA 90260 (213) 371-4010 Tues-Sat. 11:30 to 6 PM

```
\mp@subsup{L}{m}{E}
Analog to Digital Conversion System for the KIM Computer

Give the KlM the ability to sense, measure, and control the world around it with IAM SYSTEMS modules. Just plus the KIMSET 1 into the KIM to set 16 channels or analos inmut. Screw Lerminals are frovided ror each channel 50 you can hook up jousticks. pots, or
whatever afrorofiate sensors you have. Whatever afrropriate sensors you have. \begin{tabular}{l} 
Each of the 16 analos infuts. \\
ranste of \(0.0 ~\) \\
\hline .12 volts, is
\end{tabular} the ransle of o lo 5.12 volls, is and 255 ( 20 millivolts fer count) Conversion linue is 100 microsconds. The KIMMOL frovides one user fort as well as a HAM SYSTEMS forl. Sortware is frovided.



CONNECTICUT T microCOM 150 POCONO ROAD BROOKFIELD, CONNECTICUT 06804 -C107 TEL: (203) 775-9659 TWX: 710-456-0052 VISA AND M/C ACCEPTED - SEND ACCOUNT NUMBER, EXPIRATION DATE AND SIGN ORDER.
ADD 33 PER ORDER FOR SHIPPING A HANDLING - FOREIGN ORDERS ADD \(10 \%\) FOR AIR POSTAGE

\section*{STOCK MARKET • TRADER ENTREPRENEUR}

\section*{OPTION ANALYSIS SYSTEM}

This system in strictly for the market speculator. Working with price, calculated volatility, and calcula ted average daily premium, this sys tem picks the best buys from 75 or more options. Judgement by the onalyst is required. For \(\$ 35.00\) you receive two programs plus example data base and instruction manual. TRS 80 LEVEL II 16 K and PET

\section*{STOCK MARKET ANALYSIS SYSTEM}

Technical analysis, 12 daily and 15 weekly indicators, for the stock market enthusiast. This system signaled the Oct. 78 debacle. For \(\$ 25.00\) you receive two programs plus data base and 27 page detailed instruction manual TRS 80 LEVEL I or II 16 K and PET

\section*{FINANCIAL ANALYSIS SYSTEM}

Includes iwo programs and hard copy instructions for better control of your stock and option transaction. For \(\$ 20.00\) yourseceive software witheight analysis routines. Two of these rout ines are stock transactions which made money and option transactions which made money. Six more program rout ines exist with some consideration given to taxes. Please indicate
TRS 80 LEVEL II 16 K or PET 8 K

\section*{ACCOUNTING ANALYSIS SYSTEM}

Includes two programs and hard copy instructions for a small cash enterprise. From your data base a Profit and Loss Statement as well as a Balance Sheet are produced In addition simple budget comparisons are made. Please remit \(\$ 20.00\) and indicate TRS 80 LEVEL II 16 K or PET 8 K

\section*{LETTER PROCESSER}

This program for TRS 80 owners with printers. Generates letters to different individuals with the same body. Cassette file stores names and addresses. Remit \$ 15.00 .

Distributed by
STEVEN E SHAW PE PO. BOX \(1707 \sim\) S76 Tampa, Florida 33601

\section*{LICHT PEN \\ PET TRS-80 LEVEL II}

BYPASS THE KEYBOARD INTERACT WITH THE SCREEN DIRECTLY

APPLICATIONS:
- Education
- Business
- Games
- Home

NO ASSEMBLY NECESSARY READY TO PLUG IN

COMPLETE INSTRUCTIONS AND DEMONSTRATION PROGRAM PROVIDED

TRS-80 PEN Includes Demo-Game Cassette MAIL COUPON TODAY!

30 DAY UNCONDITIONAL MONEY BACK GUARANTEE!

Please send me a 3-G Light Pen. I've enclosed a check or money order
TRS-80
PET
\(\$ 29.95\)
ADD \(\$ 1.50\) FOR
\(\$ 34.95\)
\(\square\) \$29.95
MAILING AND HANDLING ( \(\$ 6.00\) FOREIGN)

NAME
ADDRESS \(\qquad\) CITY \(\qquad\) STATE

ZIP
(3) Rt. 3, Box 28A Inc., Dept. KB Rt. 3, Box 28A
Gaston, OR 97119
- T69

\section*{FOR TRS-80" \({ }^{\text {min }}\) owners} T-PA L"
Programming Amateur's Letter THE "DO-IT-YOURSELF" SOFTWARE NEWSLETTER LEVEL II FROM THE BOTTOM UP ... IN PLAIN ENGLISH! buSiness • personal - hobby
THERE'S NOTHING ELSE LIKE IT!
Published monthly
\$24. per year
\$1 for sample


The Fastest, Most Cost-Effective North Star Business Software Available . . . Period!
We offer features that no one else has, at any price. For example:
GENERAL LEDGER 2.4
- Uses standard double entry accounting methods.

Uses our Skip Sequential \({ }^{\text {TM }}\) file structure for fast posting and efficient use of disk space (see May, 1979 KILOBAUD, page 16).
Direct cursor control for the SOL, SOROC, ADM-3 and ADDS-100 video systems. (Standard version for all other video systems.)
* Custom Chart of Accounts with full editing. (A system with 16 K of user memory will support over 200 accounts.)
- Posting by account name, number, OR both.
- Printer output routines for Income Statement, Balance Sheet, Data files and other reports.
Can be used by CPA's on a "one-disk-per-client" basis (specify CPA version when ordering).
* All programs are parameter-driven to avoid repetitive inputs.
* Operator's manual designed for the user with no computer experience.
* A total of 18 programs for the ultimate in user flexibility.
- Price; only \$99.95!

We also have A/R, A/P, Payroll and the most comprehensive statistics package available anywhere. All programs use North Star Release 4 or 5 DOS and BASIC, single or double density. Operator's manuals available for \(\$ 5.00\) (credited towards purchase). Please specify video system when ordering.
P.O. Box 68602 Indianapolis, IN 46268

EPROM PROGRAMMER - Model EP-2A-79


SOFTWARE AVAILABLE FOR F-8, 8080, 6800, 8085, Z-80, 6502, KIM1, 1802, 2650.
EPROM type is selected by a personality module which plugs into the front of the programmer. Power requirements are 115 VAC , \(50 / 60 \mathrm{HZ}\) at 15 watts. It is supplied with a 36 inch ribbon cable for connecting to microcomputer. Requires \(11 / 2 \mathrm{I} / \mathrm{O}\) ports. Priced at \(\$ 155\) with one set of software. Personality modules are shown below.
\begin{tabular}{lll} 
Part No. & \multicolumn{1}{c}{ Programs } & Price \\
PM -0 & TMS 2708 & \(\$ 15.00\) \\
PM -1 & 2704,2708 & 15.00 \\
PM-2 & 2732 & 30.00 \\
PM-3 & OMS 2716 & 15.00 \\
PM-4 & TMS 2532 & 30.00 \\
PM-5 & TMS 2516, 2716, 2758 & 15.00
\end{tabular}

Optimal Technology, Inc.

BLSS: The Independent newsletter of Heath Co. Computers Regular Features Special Reports The H14 Printer developed by readers

Information on compatible hardware and software from other vendors
Advance information on forthcoming Heath Co. computer products Reports of users' experiences with their systems

The EC-1108
Learning Program for Assembly Language BUSS is mailed first class (air mail overseas). Send \(\$ 8.75\) for 12 issues or \(\$ 15.75\) for 24 (overseas \(\$ 14 / 12\); \$25/24 payable un a U.S. bonk). You have the choice of starting with the latest issue or available back issues (about 8).

Bu ts, 325 -K Penn sulvanic Awe. S.E: Was bington. D.C. 20003

\section*{"THE" \\ TRS-80 Users Journal THE 80-U.S. JOURNAL}

ANYTHING you can do on (or to) Level I, Level II or TRSDOS is covered in detail by the JOURNAL. (We have been doing it with regularity since September, 1978!) Published bi-monthly; subscriptions are \$16.00/1 year, \$31.00/2 years, \$45.00/3 years in the U.S.; \(\$ 20.00 / 1\) year, \(\$ 39.00 / 2\) years, \(\$ 55.00 / 3\) years in Canada (First class mail) \(\$ 24.00 / 1\) year, \(\$ 47.00 / 2\) years, \(\$ 68.00 / 3\) years all other. (Foreign sent Airmail). MC/Visa O.K. - call (206) 759-9642 or send check or money order to:

\author{
The 80-U.S. JOURNAL PO Box 7112 Tacoma, Washington 98407 - E37 \(^{2}\)
}

If your local dealer doesn't have it, send \(\$ 3.00\) for a current sample issue!)

\section*{FREE Catalog}

New 4-way relief from problems with minicomputer supplies and accessories.
1. One-stop shopping.

Inmac (formerly known as Minicomputer Accessories Corporation) has a catalog of over 800 products. Everything from racks and lineprinter paper to connectors and cables. Each designed to help keep your minicomputer or word processing system up and running.
2. Hassle-free ordering.


Inmac lets you order by mail or phone. So keep our Summer '79 catalog close. It makes those once-tough tasks like ordering magnetic media easy, fast and foolproof.
3. Fast shipment of just the quantity you need.

Inmac ships your order within 36 hours from centers in California and New Jersey. In a bind? Call us for many special services that insure you get your order to your installation within 24 hours. Call now and give us a chance.
4. Field-proven quality means precision performance.

Inmac guarantees every product in these 70 pages for at least 45 days. And even some for up to ten years.


\section*{THE PERFECT COMBINATION}
\(\$ 139.00\)

VIDEO 100 MONITOR

The Video 100 is designed to meet your monitor needs for both personal and business use. It is compatible with a wide range of computer systems, and with a bandwidth of 12 MHz it is capable of displaying up to 80 characters per line on this 12" B/WCRT. The solid state circuitry assures a stable \& sharp display. The front panel controls include power, contrast, horizontal and vertical holds. Adjustments for height, vertical linearity, and width control are located on a rear panel. All the above features for only \(\$ 139.00\).

OE 1000 VIDEO TERMINAL
\$275.00


The OE 1000 Video Terminal provides you with a low cost means to communicate with your computer. The OE 1000 will display 16 lines of 64 characters on a monitor or modified TV. The terminal will generate and display the full 96 ASCII character set (upper and lower case) plus 32 special characters (Greek letters and math symbols). The terminal will also erase to end of line, erase to end of screen, scroll, and it has full \(X-Y\) cursor movement. Interfacing to your computer requires a full duplex, serial, RS232 or 20 mA loop I/O port at the rate of 110 or 300 baud. The OE 1000 sells for \(\$ 350\) assembled or \(\$ 275\) in kit form.

Master Charge, Visa, accepted. COD Extra. Add \(\$ 5\) per unit, \(\$ 10\) both units, shipping handling insurance.
The perfect low cost combination of the OE 1000 and Video 100 are available from

FOR THE VERY BEST IN NORTH STAR COMPATIBLE SOFTWARE：
TEXT PROCESSING：‘TFS＇text processing system．The most powerful word processor／output formatter available for North Star！Justifies both left and right margins．Paging，page numbering，block moves，file merges，global search and change．You can save and load text files to or from disk．Plus much，much more！＇TFS＇has everything you want in a text formatter．Minimal system： 24 K RAM starting at 0000 H ．Includes extensive user＇s manual．－\(\$ 75.00\)
ASSEMBLER AND OPERATING SYSTEM：＇Arian＇is the assembler／operating system you need for both the large and small jobs．Supports all wanted features，plus those special extras：user defined commands，disk based com mands，transient program area，memory management，and dynamic file crea tion／deletion．Also：You can save and load obj．／source files to and from disk Minimal system： 24 K RAM starting at 0000 H ．Extensive user＇s manual in cluded．－\(\$ 50.00\) ．Special utility package for＇Arian＇：－\(\$ 50.00\)
＇TINY＇PASCAL！！：The famous Chung／Yuen＇Tiny＇Pascal．A great way to write structured programs that execute up to 25 times faster than Basic．Includes source to the compiler，written in Pascal！（You can even re－compile the com－ piler．）Supports recursive procedures and functions as well as if ．．．then
else ．．．then，case，while，repeat／until，etc．（You need 24K RAM； 36 to com－ pile the compiler）．\(\$ 40.00\)
INSURANCE AGENTS：We have a great package just for you！The＇CRS＇client record system．A complete program system created to supply your agency with all necessary and pertinent information about your clients and pros－ pects．This package is specifically designed with use as a marketing tool in mind！Lets you search your records any way you want and has a powerful ＇sieve＇search to find correlations and exceptions（i．e．，All the clients that have homeowners with you and not auto，etc．）．Much，much more．Minimal system： 48 K RAM starting at 2000 H ，two disk drives．Holds up to 1500 names double density， 750 single density．Comes with extensive user＇s manual－\(\$ 250.00\) Plus much more．Write for catalog or call 217－344－7596 Also，custom programming，consulting and on－sight installation is available hrough Supersoft．Call or write us． Specify single or double density．

\section*{Main／Frames ion \(\$ 200\)}

\section*{Main／Frames tom}
－ 14 Basic Models Available
－Assembled \＆Tested
－Power Supply：
8v＠15A，\(\pm 16 \mathrm{~V} @ 3 \mathrm{~A}\)
15 Slot Motherboard
（connectors optional）
－Card cage \＆guides
Fan，line cord，fuse，power \＆reset switches，EMI filter
－8v＠30A，\(\pm 16 \mathrm{v@10A}\) option on some models

\section*{LEVEL IV PRODUCTS，INC．IS TURNING THE WHOLE TRS－80 \({ }^{\text {m }}\) SOFTWARE INDUSTRY UPSIDE－DOWN BY HANDLING NOTHING BUT THE BEST SOFTWARE FROM ALL POSSIBLE SOURCES ！！！}

102॥0う 146וәл paddıчS алемрлен II甘
 00．68を．．ןenuew pue əqeэ ssəા Idəวхә əлоqе se əwes 00GEャ・•••••••（pəpniou！ıои

 00.9 ．．．．．．．．．．．．．xоя रıе」q！7



\(00.68^{\cdots}\) ；SOGMON salu！！ 10 чиом 0009 ls sapnjou！
\(006 t^{\circ}\)
－006t… sogman

\section*{}
pənjos wəiqoid O／l－ysig－əounoqəo
iכIS \(\forall\) ЭNIへ \(\forall \exists\urcorner\) yヨヘヨN pue
 \(\mathrm{S}^{\prime} \mathrm{O}^{\circ} \mathrm{G}\) mos swes6oıd o！seg uny oln ：Sヨy
SOQMON OL d〇 dヨ S OL NOSVヨy ヨHOW ヨH\＆ \(77 \forall\)
 ＋SOQMON－SOQMON


00 G1
．．．．．．．．．．．．．．．．．．．．бu！dA 09．L．．．．．．．．．．．．．．．．．．．．．．．．．．．леу 09．L．… иешбиен рәャш！и \(\forall\)
 uin piospub


 O9ㄴ \＄\(\cdots \cdots \cdot \cdot \cdot\) səp！ey uol人う

\section*{TRS－80 \({ }^{\text {Tm }}\) of Tendy}

\section*{96＊\(\downarrow\)－ 17 NO}
iWヨH」 ヨメVヨYO－SヨWVO YOO人 \(\exists \perp I y M\) L．NOO＇\(!!!!!\cap\) 6u！！！ıM sכ！чdeı pəads 46！Н ayod ueपl lolsey sou！1 OG
SOIHdVYロ 七 7ヨヘヨา
00.08

त्र91 রıowəW
xsic G66ls ssej G6＇tls sכ！чde» pәәdS 46！H ıədns

6L61＇08 boıd
иәәs ィəィә әлец әм

Sヨา \(\because \forall 9 ~ \exists コ \forall d S ~\)

LEVEL IV PRODUCTS，INC
PHONE：（313）525－6200
32238 SCHOOLCRAFT • SUITE F4 LIVONIA，MICHIGAN 48154

SUPPORTING 6800
COMPUTERS


High Performance Cassette Interface
- FAST - 4800 Baud Loads 4 K in 8 Seconds!
- RELIABLE - Error Rate Less Than 1 in \(10^{\circ}\) Bytes.
- CONVENIENT - Plugs Directly Into The SWTPC.
- PLUS - A Fully Buffered 8 Bit Output Port Provided.
- LOW COST - \(\$ 49.95\) For Complete Kit.
- OPTIONAL - CFM/3 File Manager.

\section*{CALLTHEM DISKETTES OR MARKETTES}


\section*{CALLTOLL-FREE 24 HOURS TO ORDER! 800-824-7888 OPERATOR 544} IN CALIFORNIA CALL TOLL-FREE 800-852-7777 ALASKA \& HAWAII TOLL-FREE 800-824-7919 FOR MORE INFORMATION Call 415-573-8217, 9 a.m. to 5 p.m. Pacific Time


BANK CARDS OR C.O.D.

OR SAVE C.O.D. AND SHIPPING BY ENCLOSING CHECK WITH YOUR ORDER.

SPECIFY SIZE,TYPE AND COMPUTER...
\(51 / a^{\prime \prime}\) Soft Sector, 10 Sector, 16 Sector \(8^{\prime \prime}\) IBM Compatible, \(8^{\prime \prime}\) Hard Sector

PRACTICAL APPLICATIONS \({ }^{\text {™ }}\) POST OFFICE BOX 4139 FOSTER CITY, CALIF. 94404


Remember LEVEL I shorthand? ( P . = PRINT, G= GOTO, etc.) Now TSHORT'TM lets you type LEVEL II/DISK BASIC more quickly and accurately than ever before.

TSHORT is programmed with 32 popular and/or difficult to type statements. By a mere single shifted keystroke, any one of these statements will be spelled out on the monitor as if you had typed them letter by letter.

TSHORT saves up to \(90 \%\) programming time and gives you \(100 \%\) accuracy. Syntax errors are a thing of the past

TSHORT features a 64 character user defined KUSTOM™key, changeable anytime, plus several selfentering commands such as CONT and GOTO10. (Line 10 may contain "RUN.")

What really makes TSHORT easy to use are the pressure sensitive, easy to install labels included for your keyboard. (See photo.)

TSHORT easily loads from cassette, one side for LEVEL II, the other for DOS via TAPEDISK. TSHORT runs in only 580 bytes of low memory and is compatible with TRSDOS V2.1 \& 2.2, KBFIX, NEWDOS, ETC.

ONLY \$9.95
Send check or money order to: WEB ASSOCIATES
Dealer inquiries invited
Dealer inquiris
Phone Orders:
(714) 559.6249
\(\checkmark\) W20
P.O.Box 60-KC

Monrovia, CA 91016


Whether for technical/graphics or a more realistic game of Star Wars, you' 11 love this precision gimballed joystick with self-centering action and unique capacitive switch that activates with only a touch of the control shaft. Front panel accessible \(X\) and \(Y\) axis trimmers and input pushbutton are featured on the PAIA/APPLE II Joystick. Plug compatible with the APPLE II game controller.
Distributed by: High Technology, Inc., Oklahoma City - P9 Dealer Inquiries Invited -

Send the PAIA/APPLE/II Joystick Controller \(\square \$ 65.00\) plus \(\$ 1.50\) postage enclosed. \(\square\) Charge __VISA MC MC
Card No. \(\qquad\) Expiration Date:
name
address
city \(\qquad\) state \(\qquad\) zip
F-9 A ELECTROWICS DEPT. 9-K, 1020 W. WILSHIRE BLVD., OKLAMOMA CITY, OK 73116

\title{
CP/M+TRS-80
}

\section*{The CP/M Operating System now available for Radio Shack's TRS-80}

\section*{CP/M OPERATING SYSTEM}
- Editor, Assembler, Debugger, and Utilities
- For 8080 and Z-80 Systems
- Up to four floppy disks
- Documentation includes:

CP/M Features and Facilities
CP/M Editor Manual
CP/M Assembler Manual
CP/M Debugger Manual
CP/M Interface Guide
CP/M Alteration Guide
CP/M System Diskette and Documentation (Set of 6 manuals) for \$150.
CP/M Documentation (Set of 6 manuals) only \(\$ 25\).

MAC MACRO ASSEMBLER
- Compatible with new Intel Macro standard
- Complete guide to Macro Applications

MAC Diskette and Manual for \$150.

\section*{SID \({ }^{\text {No }}\) SYMBOLIC INSTRUCTION DEBUGGER}
- Symbolic memory reference
- Built-in assembler/disassembler

SID Diskette and Manual for \$125.

\section*{TEX TEXT FORMATTER}
- Powerful text formatting capabilities
- Text prepared using CP/M Editor

TEX Diskette and Manual for \(\$ 125\).

\section*{HIGH-LEVEL LANGUAGES}
- Basic
- Fortran
- Cobol
- Call or write for information

\section*{USER'S GROUP}
- 35 disks with utilities, games and applications
- Call or write for information

\title{
Build your own microcomputer as \(y\) ou learn computer technology at home.
}

\section*{New from NRI! The Most Complete and Up-to-date Home Study Course Ever Offered}

As the microprocessor revolutionizes the computer world and microcomputers appear almost everywhere, NRI brings you a new, convenient, and effective way to keep up with this expanding technology. It's NRI's Computer Technology Course, created and designed exclusively for learning at home in your spare time.

\section*{Featuring NRI's Exclusive} Dual Language Microcomputer

NRI goes beyond book learning to give you practical, "hands-on" experience in designing circuitry, interfacing components, programming, and troubleshooting. As you learn, you actually assemble NRI's designed-forlearning microcomputer, incorporating the latest advances in the state of the art. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. And it's yours to keep, put to work in your own home or business.

You also build and keep your own test instruments, including a transistorized voltohm meter and CMOS digital frequency counter. And NRI's Discovery Lab \({ }^{\oplus}\) broadens your horizons with specialized experiments and theory demonstrations.

\section*{The Proven Way to Learn at Home}

You don't have to worry with travel, classes, or time lost from work when you learn the NRI way. As they have for more than 60


years of teaching technical subjects, NRI brings the material to you. You study in your spare time, at your convenience, using "bite-size" lessons that program material into logical segments for easier assimilation. You perform experiments and build equipment using kits we supply. And your personal NRI instructor is always available for consultation should you have questions or problems. Over a million students have already shown the effectiveness of NRI training.

\section*{Choice of Courses}

Several courses are available, depending

\section*{Send for Free Catalog...} No Salesman Will Call
Get the details on these exciting new courses in NRI's free, 100-page catalog. Shows all kits and equipment, lesson outlines, and full information, including facts on other electronics courses. Mail the coupon today and we'll rush your catalog. No salesman will ever call. Keep up with the latest technology as you learn on your own computer. If coupon has been removed, write to NRI Schools, Computer Department, 3939 Wisconsin Ave., Washington, D.C. 20016. upon your needs and background. NRI'sMaster Course in Computer Technology starts with the fundamentals, explores basic electronics and digital theory, the total computer world, and the microcomputer. The Advanced Course, for students already versed in electronics and general computers, concentrates on the microprocessor and microcomputer. In both courses, you build all instruments and your own computer.


\section*{NRI Schools}

McGraw-Hill Continuing
Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016
NO SALESMAN WILL CALL
Please check for one free catalog only.

\(\square\) Digital Electronics • Electronic Technology • Basic Electronics \(\square\) Small Engine Repair Electrical Appliance Servicing Automotive Mechanics
\(\square\) Auto Air Conditioning
\(\square\) Air Conditioning, Refrigeration, \& Heating Including Solar Technology
\(\overline{\text { Street }}\)
\(\overline{\text { City/State/Zip }}\)
Accredited by the Accrediting Commission of the National Home Study Council
172-099

\section*{16K Static RAM Boards for the SS-50 Bus}
- Gold bus connectors
- 4 separate 4 K Blocks
- Individual Addressing, Write Protect, and Enable/ Disable for each block
 s298 \({ }^{13}\)


As above with Sockets and Software control features. \({ }^{5} 368^{16}\)

All GIMIX memory boards are assembled, Burnt-In for 2 weeks, and tested at 2 MHz . Add \(\$ 32.00\) for 250 ns parts

TI TMS 4044's - 10\% SUPPLY (Not an "equivalent", but the real thing!) \(450 \mathrm{~ns} \$ 5.00\) each \(250 \mathrm{~ns} \$ 6.00\) each 8K PROM BOARD \(\$ 98.34\) 2708s \$7.90 each SS 50 BUS \(80 \times 24\) VIDEO BOARD


With hardware scrolling, \(x-y\) addressable cursor and multiple character generators. It includes a TMS 2716 EPROM that contains a full 128 upper and lower case ASCII character set with true descenders; plus a socket for another TMS 2716 for an optional 128 character set; plus 2K of RAM for user-defined programmable character sets. This gives the user the ability to create his own heiroglyphics, alphabet, graphic elements, etc.,
and store them on PROM, disk, or tape.

The user can choose and intermix 384 different characters from any or all of the character generators and at full or half intensity, at any location on the screen. Contiguous \(8 \times 10\) character cells permit solid lines and connecting patterns with user definable graphic elements.
It is addressable to any 2 K boundary. GHOSTable addressing allows multiple boards at the same address, making it ideal for multi-user applications. The available software includes a GMXBUG video based 3K ROM monitor, stand alone driver routines, and a program to
create user defined characters. create user defined characters.

DELUXE VERSION \$458.76
Other Video Boards from \$198.71


16K SYSTEMS \$1294.29
Includes: Mainframe cabinet, mother board, power supply, fan, CPU, 16K static RAM, and choice of \(1 / 0\) card.
Other packages available.
Add \(\$ 10\). handling charge on orders under \(\$ 200\).

1337 WEST 37th PLACE
CHICAGO, ILLINOIS 60609 (312) 927-5510 • TWX 910-221-4055

The Company that delivers.
Quality Electronic products ssince 1975.

\section*{TRS-80 COMPATIBLE DISK DRIVES}

40 TRACK CAPABILITY.
\(\$ 379.00\)

\section*{16K MEMORY KITS}

FOR TRS-80, APPLE, SORCEROR WITH JUMPERS AND INSTRUCTIONS LIFETIME GUARANTEE!!!!!!!!
\(\$ 79.00\)
WE ALSO CARRY A COMPLETE LINE OF MANY BRAND NAME PRODUCTS INCLUDING:
RADIO SHACK, APPLE, SORCEROR, CENTRONICS, INTREGAL DATA, NEC, SPINWRITER, SD SALES,
AND MANY MORE!
OUR SOFTWARE INVENTORY INCLUDES: GEŃNERAL LEDGER, ACCT'S PAYABLE, ACCT'S RECEIVABLE, ELECTRIC PENCIL, INVENTORY, CLIENT BILLING, MAILING LIST, INTELLIGENT TERMINAL AND A HUGE SELECTION OF GAMES, UTILITIES AND APPLICATIONS SOFTWARE.

TO ORDER CALL OR WRITE
MICRO COMPUTER PERIPHERALS
1467 SOUTH MICHIGAN AVE.
CHICAGO, IL 60605
[312] 251-5028
Master Charge, Visa, C.O.D.
Accepted
-M106
T-BUG USER:
Super TLEGS: Onboard relocator for TBUG, moves T BUG to any desired RAM location. Now examine, modity. \#P punch backup copies of formerly coincident program material, experiment with parallel kustom T.BUGs. Also will relocate TSTEP. 16 K Level II Super TLEGS No. LL. 0 related to instruction set as you SPACE through ROM or RAM Indispensible for debugging, analyzing alien program material or learning \(Z .80\).
a) CPU registers in before/atter \# R-like format, user accessible, independent of TBUG registers
b) Testable flag status in before/after format c) Top stack elements in before/atter format. d) 8 key Implicit Keypad. Backspace, CLEAR. more. Subroutines can be single stepped or run directly. contro remaining with TSTEP Also, Super TLEGS will relocate TSTEF making monitor and single stepper into an independently relocatable unit. Confirm any code by seeing what you are imagining.
16K Level II TSTEP No. LL. 1
11.95
EMU 02: Software emulation of the 6502 microprocessor T. BUG displays byte, EMU takes it from there. Now you can write, debug. execute 6502 programs on your TRS-80!
a) Disassembler posts standard 6502 Assembly mnemonic next to T-BUG displayed byte, in scrolling field b) Single-stepper displays 6502 Processor Model in before/after form, expanded flag and stack elements, all up dated after each instruction is SPACE ed.
c) 4 speed TRACE mode anımates 6502 Models, activates keyboard scan port accessible to 6502 instructions.
d) Fast interpretive RUN mode for realistic execution. e) 13 key Implicit Keypad, Backspace, Relspace, more
How to have a 6502 without having a 6502 ! Compare and contrast, work in a powerful programming language that is distinct from BASIC, Z.80. Read Apple, PET code 16K Level II EMU 02 No. BL 1
75 malling each program, CA add \(6 \%\) ALLEN GELDER Box 11721 Main Post Office San Francisco. CA 94101
T.BUG, TRS 80 tm Radıo Shack/Tandy Corp.

\section*{"FULLY INTEGRATED COMPUTER SYSTEM"}


THE MINIMAX SERIES WAS DESIGNED TO OFFER THE MARKET MINICOMPUTER CAPABILITIES AT MICROCOMPUTER PRICES. COMPARE THE CAPABILITIES \& PRICE!

\author{
CONTACT NEECO FOR FULL SPECS - FREE MINIMAX MANUAL.
}

\section*{MEET THE MINIMAX COMPUTER} THE MINIMAX SERIES COMPUTER WAS DESIGNED BY INDUSTRY PROFESSIONALS. COMPARE THE PRICE AND FEATURES TO ANY OTHER COMPUTER IN ITS CLASS!


MINIMAX I-. 8 MEGABYTE ON LINE MINIFLOPPY STORAGE MINIMAX II - 2.4 MEGABYTE ON LINE 8" FLOPPY STORAGE

MINIMAX I - \(\$ 4495\) MINIMAX II - \(\$ 5995\)
- THE MINIMAX SERIES COMPUTER IS AN INTEGRATED, COMPACT UNIT CONTAINING THE CPU, DUAL DENSITY DISK STORAGE, 12 INCH CRT, AND FULL STYLE KEYBOARD, WITH SEPARATE NUMERIC ENTRY PAD. ALL KEYS (INCLUDING CURSOR) WITH FULL REPEAT - HYBRID 2 MEGAHERTZ 6502 CPU • 108K SYSTEM RAM (48K USER) •FASTEST FLOPPY DISK ACCESS (24K LOADS IN 42 INCLUDES COMPLETE FIENTAINS COMPUTHINK BASIC (AN EXTENDED MICROSOFT BASIC) WITH EXTENDED PRECISION. ASSEMBLER - COMPLETE HIGH RESOLUTION GRAPHICS WITH INDIVIDUAL DOT ( \(240 \times 512\) ) POINT SCREEN ADDRESSABILITY FULL SCREEN TEXT EDITING WITH OVERWRITE, INSERTION OR DELETION - SPLIT SCREEN/WINDOW MODES • INDIVIDUAL FIELD EDITING WITH FIELD PROTECT AND AUTO SKIP TO NEXT FIELD - DISK STORAGE SYSTEM TRANSFERS \(6 K\) PER SECOND WITH AUTO VERIFY AND PARITY CHECK - 12 INCH CRT-64 CHARACTERS BY 30 LINES. UP TO THREE PROGRAMMABLE CHARACTER FONTS FOR LANGUAGES OR SPECIAL CHARACTERS • - SWITCHABLE 110 OR \(22 O \mathrm{~V}\) OPERATION • - - - HYBRID CPU IS MICROPROGRAMMABLE WITH 64 USER DEFINABLE OPCODES. CHOICE OF \(800 K O R 2.4\) MEGABYTE DISK STORAGE -FULL SERIAL RS-232C PORT WITH PROGRAMMABLE BAUD RATES AND MODEM CONTROL SIGNAL • DEDICATED DISK PORT • PRINIER AVAILABLE - PLMP

\section*{SPECIAL DEALER PRICING AVAILABLE ON DEMONSTRATION} MINIMAX AND SOFTWARE PACKAGES TO QUALIFIED SELECTED DEALERS. CONTACT NEECO FOR INFO.

THE MINIMAX WAS DESIGNED AND IS MANUFACTURED BY COMPUTHINK
COMPUTER CORP. DISTRIBUTED IN EUROPE AND THE EASTERN U.S. BY NEECO.
PRINTER NOT
INCLUDED IN PRICE

IN ADDITION TO HARDWARE CAPABILITIES THAT ARE UNMATCHED IN THE INDUSTRY, THE MINIMAX COMPUTER SUPPORTS A COMPLETE DATA BASE SYSTEM (PAGEMATE), CONTAINING FULL STATISTICAL, SORTING, AND EDIT FUNCTIONS. A PLM COMPILER IS AVAILABLE, FULL BUSINESS SUPPORT SOFTWARE IS AVAILABLE AND MORE!-FULL DEALER SUPPORT IS AN IMPORTANT PART OF OUR MARKETING. CONTACT NEECO FOR FURTHER INFORMATION.

THE MINIMAX IS NOW AVAILABLE FOR QUANTITY DELIVERY. DOMESTIC DEALERSHIPS AVAILABLE. EUROPEAN DISTRIBUTORSHIPS/DEALERSHIPS AVAILABLE TO QUALIFYING COMPANIES WITH SUPPORT CAPABILITIES. SOFTWARE HOUSES AND OEM INQUIRIES INVITED. CONTACT NEECO.

\title{
TRS-80 OWNERS!
}

HOUSTON MICRO-COMPUTER TECHNOLOGIES INC. is proud to announce its new dealership program through authorized Radio Shack Dealers and Franchisees around the country.

All Radio Shacks are not created equall There are several good reasons you should buy your TRS-80* from an independent Radio Shack Dealer or Franchisee. Most Radio Shack outlets are company-owned and are tightly restricted in what products and services they can offer you. However, there are over 2,000 independent Radio Shack Dealers around the country - more and more of whom are becoming affiliated with Houston Micro-Computer Technologies - who can offer you a wider range of product, better service, quicker delivery, and more thorough follow-up than the Radio Shack company stores can hope to provide.

Radio Shack company stores can only demonstrate and sell Radio Shack products, whereas our network of
independent Radio Shack distributors can offer you a wide range of high quality products. Comparative delivery dates are worlds apart! For instance, Radio Shack company stores advertise a 4 to 5 month delivery on disk drives; our dealers can procure disk drives from us in 30 days! If a Radio Shack dosen't have what you need: tough bananas! Yet our Radio Shack dealers can get what you need from us, even if it means our writing a special program for you.

It is important to remember that our dealers are independent businessmen who have been in your community for some time and have a real stake in your satisfaction. And rest assured that all Radio Shack products sold by Dealers and Franchisees are completely warranteed by Radio Shack, and that all other brands we handle are completely guaranteed by the manufacturer and by us.

Houston Micro-Computer Technologies has a team of highly trained computer specialists with over 37
years of experience in the Radio Shack organization. We specialize in the TRS-80* - the world's most popular microcomputer - but also offer, through our extensive network of independent Radio Shack dealers, a complete computer product line which includes the complete Centronics line of printers, Texas Instruments' outstanding 810 and 820 (KSR) line printers, Pertec disk drives, NEC Spinwriter, IBM Selectraprint, Scotch diskettes, and NEC RAM kits. More powerful computer systems will also soon be available through Houston Micro-Computer Technologies' dealer network.

Please call or write Houston MicroComputer Technologies Inc. today and let us give you the name and address of the nearest authorized independent Radio Shack distributor who can offer you the full range of products, services, and expertise that you require.
*TRS-80 is a product of Radio Shack

TRS - 80 TRS \(\cdot 80\) TRS 80 TRS 80 TRS 80

Security Analysis Package

- annuities calculation
- stock valuation
- option value
- option writing
- capital accumulation planning
- and much more

32K Disk System Required

Software Technical Manual

This manual gives all the calling addresses of the functions and keywords in the Level II BASIC. It also explains internal data manipulation, compare logic, in-memory formats, and much more.
\begin{tabular}{lr} 
Manual & 49.95 \\
Disassembler & 19.95 \\
Both & 59.95
\end{tabular}

Surveying Package


Performs the following:
- traversing by angles or points
- closure and adjustment of angle
- traverse balancing
- mathematical functions rotated traverse geometric problem solving
- and much more 32K Disk System Required

To order by phone or for local dealer information call: 713/661-2005 Texas residents add \(6 \%\) sales tax \(\cdot\) MasterCharge \(\cdot\) Visa

\section*{Make Your TRS 80 Work Like A Mini-IBM!}

Mailroom Plus was developed for the National Rifle Association membership mailings. It features sorting by last name or member number in addition to zip code. The program will sort 500 names in \(30-40\) minutes, kill duplicates, and close up the file. Mailroom Plus will also search all records for category, name, state, zip (or any other search code) and print these records on labels or in tabular form. It separates large files into smaller ones by state or zip or merges small files into one large one. Mailroom Plus is available in Cassette ( 16 K , Level II) for \(\$ 29.95\) or disk (32K) for \(\$ 49.95\) by first class mail. Order yours today postpaid.

THE PERIPHERAL PEOPLE ص52 PO Box 524, Mercer Island, WA 98040

Master Charge and VISA cards welcomed


\section*{DEFINITELY DIFFERENT}


\section*{FROM HAYDEN}

New! Z-80 AND 8080 ASSEMBLY LANGUAGE PROGRAMMING
(Spracklen) An extensive introductory look at assembly language programming for the 8080 and \(Z-80\) processors. Programming techniques are presented along with the instructions. Numerous diagrams and examples are provided, plus exercises with answers. \#5167-0, \$7.95
New! DESIGNING MICROCOMPUTER SYSTEMS (Pooch \& Chattergy) Provides both hobbyists and electronics engineers with the information necessary to build microcomputer systems. Also discusses the hardware aspects of microcomputer systems, including microprocessor architecture, input and output ports, interrupt systems, programmable clocks, memory units, etc. \#5679-6, \$8.95
New! PASCAL WITH STYLE:
Programming Proverbs (Ledgard \& Nagin) A style guide for writing more accurate, error-free programs. Includes samples of PASCAL programs and a special chapter showing how to use the top-down approach. \#5124-7, \$6.95


The Champor


Available at your local computer store.
Hayden Book Company, Inc.
50 Essex Street, Rochelle Park, NJ 07662

\title{
CLASJIFIEDS
}

Classified advertisements are intended for use by persons desiring to buy, sell or trade used computer equipment. No commercial ads are accepted.
Two sizes of ads are available. The \(\$ 5\) box allows up to 5 lines of about 35 characters per line, including spaces and punctuation. The \(\$ 10\) box allows up to 10 lines. Minimize use of capital letters to save space. No special layouts allowed. Payment is required in advance with ad copy. We cannot bill or accept credit.
Advertising text and payment must reach us 60 days in advance of publication (i.e., copy for March issue, mailed in February, must be here by Jan. 1). The publisher reserves the right to refuse questionable or inapplicable advertisements. Mail copy with payment to: Classifieds, Kilobaud Microcomputing, Peterborough NH 03458. Do not include any other material with your ad as it may be delayed.

Must Sell . . . Need Money A fully populated OSI Challenger I11 System. Includes 32K, dual \(8^{\prime \prime}\) floppies, keyboard, video, cassette, graphics, monitor, 16 serial I/O board, 28 -bit \(D / A s, 1\) A/D with 8 channel multiplexer, 3 parallel \(1 / O s, 1\) megabyte memory management, software switchable address for all three micros, with connecting cables
. fully operational. Will sell for \(\$ 4500\). Plus 5 free disks of software with purchase, includes BAS1C, Assembler, Editor, CH 11 I Op Sys, WP-1A, OSI Level 1 and much, much more. Pat Reynolds (713) 674-8367.

Ohio Scientific C2-4P with connected RS-232 port and switch selectable baud rates, works perfectly. Cost \(\$ 598\) : will sell for \$498. Pat Reynolds (713) 674-8367.

For Sale: SWTPC 6800 computer with 12K memory, SWTBUG, serial and parallel \(1 / \mathrm{O}\); CT-1024 terminal with scrolling mod in Enclosure Dynamics case; AC- 30 cassette interface; GT6144 graphics board with joystick. Each housed in separate cases; all interconnecting cables, full documentation and large variety of software (SWTPC 4 K and 8 K BASIC, Microsoft BASIC, assembler, games). \$650. R. Maryanski, 424 Grant Ave., Eatontown NJ 07724 (201) 542-4735.

Digital Group System Z-80 CPU, 26K memory, \(16 \times 64\) CRT, 2 Phi-Decks, Expandor Printer, cassette recorder, extensive software, all documentation and loads of extras: \$3,500. Paul A. Teseny, 17 DeKalb Place, Morristown, NJ 07960. (201) 539-6876, Evenings.

For Sale: 32 K static RAM board, S-100, 450 \(\mathrm{ns}, 32 \mathrm{~K}\) boundaries, asmbld \& tested; \(\$ 550\) \(\mathrm{ns}, 32 \mathrm{~K}\) boundaries, asmbld \& tested; \(\mathbf{\$ 5 5 0}\) postpaid. Imsai cassette interface board, S-100, asmbld; \(\$ 40\) postpaid. Wm. Peterson, Caltech 158-79, Pasadena CA 91125.

Upgrading to larger system. TRS-80 CPU w/16K RAM, CRT, tape recorder: all for \$750. TRS-80 expansion interface w/32K RAM; \$450. Two disk drives (Radio Shack's); \(\$ 450\) each w/cable. Four non-Radio Shack disk drives (designed for TRS-80 use, however); \(\$ 400\) each. Centronics 779 printer w/tractor feed; \(\$ 1200\). Bruce Taylor, printer w/tractor feed; \$1200. Bruce Taylor,
118 So. Mill St., Pryor OK 74361. Call (918) 118 So. Mi
\(825-4844\).

4 printers with keyboards ( \(\$ 395\) ea). Recon4 printers with keyboards (\$395 ea). Reconditioned, Singer, dot-matrix impact, 80 char, ASCI1, \(110 / 300\) baud, async, RS- 232 interface, friction or pin feed. M. Osedo, 1367 Nanawale Place, Kailua H1 96734.

TI-751 Baudot RO printer for sale. New T1-751 Baudot RO printer for sale. New
printhead, manuals, not working- \(\$ 150\). printhead, manuals, not working- \(\$ 150\).
RCA COSMAC-based video game as sold by RCA COSMAC-based video game as sold by
Radio Shack- \(\$ 50\). Ralph Droms, WhitRadio Shack-\$50. Ralph Drom
more Lab, Univ. Park PA 16802.

For sale: Microterm Act V CRT, \(24 \times 80\) upper/lower, numeric key pad, \(\mathbf{\$ 8 2 5}\); T1 810 printer, upper/lower, form feeds, \(\$ 1750\). Both hardly used. L. Williams, Box 554, Elmhurst IL (312) 530-7266.

For Sale: Minicomputer \& Software. 64 K CPU, 10M byte disk, 5 fix, 5 removable, 165 cps printer, 2 CRTs, 10 disk packs, up to 8 CRTs, 300 lpm printer, more disk \& core too. Software-over 100 programs for warehouse distribution, order entry, invoicing, \(A / R\), inventory control, sales analysis, history \& commissions, systems diagnostics, many games. \(\$ 30\) K. David Mayer, PO Box 1494, Englewood Clfs NJ 07632.

TI silent 700 model 743 sends and receives serial ASCII code, 10 or 30 cps .2 rolls paper, cable and manual like new. Will ship COD for \(\$ 700\). J. Church, 3570 Cortez, Dallas TX 75220. (214) 352-9568.

SWTPC CT-64, \$275 and AC-30, \$65. Both for \(\$ 340\). Professionally assembled, workfor \(\$ 340\). Professionally assembled, working, in as-new condition, and with documen-
tation. R. P. Felton, P. E., 4803, Neblina tation. R. P. Felton, P. E., 4803, Neblin
Dr., Carlsbad CA 92008. (714) 729-5519.

Digital Group Z-80 26K system with CenDigital Group Z-80 26K system with Cen-
tronics 700 printer, four Phi-deck digital castronics 700 printer, four Phi-deck digital cas-
sette drives, all cabinets, PHIMON monisette drives, all cabinets, PHIMON moni-
tors, Business Basic. Used 12 months. Best offer over \(\$ 4500\) plus shipping. Bob Brecount, 3301 Morningside, Victoria TX 77901. (512) 575-1257.

For Sale: Assembled Heathkit H8, H9 and cassette recorder. 24 K memory, serial inter face, most software (including Heath ex tended BAS1C), manuals, most HUG mags to date. Kit cost near \(\$ 1800\), will sell for \$1440. G. Counsil, 125833 Ave., San Francisco CA 94122. (415) 664-4508.

H8 Users! Tired of lack of support for your H8? I have available a set of construction articles of various useful things to do with your H8 via a parallel board: 16 Channel controller, Selectric interface, jogging computer, DAC, Telephone controllers, etc. For more DAC, Telephone controllers, etc. For more
info, write Henry Fale, 2918 S. 7th. St., Sheinfo, write Henry Fale, 2918 S. 7th.
boygan WI 53081. (414) 452-4172.

Line printer, Tally T-2200, \(2001 \mathrm{pm}, 132\) columns, \(5 \times 7\) matrix, up to 6 copies, adjustumns, \(5 \times 7\) matrix, up to 6 copies, adjust-
able tractors, \(6 / 8 \mathrm{lpi}, 8 \mathrm{ch}\). VFU, parallel interface: cost \(\$ 5000\), asking \(\$ 1600\). Also available: warranty, service contract, other interfaces. John Marshall, Box 242, Renton WA 98055. (206) 226-0981.

3 Heath H-11 (or DEC PDP 11/03) static nemory boards, \(4 \mathrm{~K} \times 16\), practically new. \(\$ 200\) each or \(\$ 575\) for all 3. M. Lowenstein, 79 Larkspur Road, Stamford CT 06903. (203) 853-7856.

New/Never Used Cromemco System Three 32K. Complete with 3355 Daisy-wheel printer and 3101 CRT terminal. Cost \(\$ 11,980\), will sell for \(\$ 8,900\). 159 Catherine Lane, Grass Valley CA 95945. (916) 273-4451.

Heathkit H9 terminal modified for 24 lines, upper/lower case entry and display, clear screen \$250. Herb Swearengen, 45 Apple Way, Frederick MD 21701 (301) 662-8225 or 882-9583.

For Sale: S\&D Sales 4K RAM, \$50. Shugar SA-400 w/pwr. supply \& cab., \$290. Micromation Per-Sci Double Density, \$2200. Mits serial 1/O board, \(\$ 100\). Vector Graphic PROM/RAM, \$75. 10 1702A PROMs, \(\$ 35\). PROM/RAM, \$75. 10 1702A PROMs, \(\$ 35\).
S\&D Cassette Interface, \$14. 3P + S \(1 / \mathrm{O}\) S\&D Cassette Interface, \$14. 3P + S 1/O
board, \(\$ 130\). Flexowriter w/S-100 interface, punch \& reader, \$375. Fred Manthey, Mul lan ID (208) 744-1143.

For Sale: Three 16 K static RAM boards Wameco boards; assembled and workin perfectly, (with 2114 s Lpower 250 ns ). Ad dress 4 Kbyte, bank select, much more. \(\$ 275\) ea; all for \(\$ 789\). Also have 2114 s for \(\$ 5 \mathrm{ea}\); 4116s for \(\$ 7.75\) ea; 4027 \$3 ea; 2141s \(\$ 4.50\) ea; 2708s \$8 ea; 2716s (+5V) \$39 ea; and FD1771B01s \$32.25 ea. Richard Smith 3648 Madrid Dr., San Jose CA 95132. (408) 946-0735.

Heathkit H8-4 4 port serial board with all 4 adapter cables. Assembled and working, \(\$ 125\). Herb Swearengen, 45 Apple Way, Frederick MD 21701. (301) 662-8225 or 882-9583.

Heathkit 12 K memory board by Godbout. Up and working \(\$ 100\). Herb Swearengen, 45 Apple Way, Frederick MD 21701. (301) 662-8225 or 882-9583.

Heath WH-17 single-drive floppy disk and controller card. With manuals and software \(\$ 500\). Herb Swearengen, 45 Apple Way, Frederick MD 21701. (301) 662-8225 or 882-9583.

Heathkit H8 computer with serial and paral lel 1/O, 32K RAM, software. Up and run ning \(\$ 900\). Herb Swearengen, 45 Apple Way, Frederick MD 21701 (301) 662-8225 or 882-9583.

For Sale for Lease: Intell MDS 220 with double density disk drive and ICE 80. Also PROM programmer and line printer. Contact Gizelle Gil, 3156 Avalon Ct., Palo Alto CA 94306.

Wanted: Grain farming operation looking for record keeping and analysis software that can be used in business. Presently own TRS-80 16K Level 11 but will be going to 32 K DOS. Please write to: Kenneth Gottfried R1, 168 Mt. Zion Rd., Nevada OH 44849.

Wanted: Will pay reasonable price for wired and working E\&L's MMD-1 micro system. Gerald Malseed, 8102 La Salle Rd., Towson MD 21204. 825-4266, leave phone no., will call back.

Xitan (TDL) SMB-2 board w/doc. New, but won't work w/Vector CPU. \(\$ 325\) or best offer. Computer store refuses to give refund. C. Heidl, 6617 Vesta Brook Dr., Morrow GA 30260.

Heath H9 video terminal, \$375. SWTPC CT-64 with Motorola 12 MHz monitor, \$300. L. Williams, Box 554, Elmhurst 1L 60126. (312) 530-7266 after 5 PM.

Imsai 808022 slot 16K RAM 2 K EPROM, Bytemover, Tarbell cassette, 3 P + S 1O, full documentation: up and running; incl. 8 K BASIC. Any offer over \(\$ 1200\). H. M. Posner, 1905 W. Flora, Santa Ana CA 92704.

For Sale: Won as computer club door prize, C-10 leaderless computer cassettes 75¢ ea; 25 for \(\$ 16.25 ; 50\) for \(\$ 27.50 ; 100\) for \(\$ 50\). Also blank cassettes, C-45/75¢; C-60/\$1; C-90/\$1.35 ea. Write/call for quantity prices. These cassettes are top quality BASF high output, low noise tapes, 5 -screw shell with protective plactic case. A. Ringel W6KVO, 1118 Raintree Circle, Culver City CA 90230. (213) 839-0324.

For Sale: SuperELF assem. hi-low disp. hardwood case, Super Expansion Board unassem. (4K-RAM, IK-ROM mon., cass. -TTY-RS-232 1Ps). Also, rf ch3, complete docum. all iss. Questdata; \$125. Read KB Apr 79, p 100. John D. Johnson, 108 Bunn Dr., Rocky Mount NC 27801. (919) 443-1654.

\section*{CAIENDAR}

\section*{Boston MA}

Northeast Personal \& Business Computer Show at Hynes Auditorium, Prudential Center, Boston MA, Friday, September 28, through Sunday, September 30, 1979. Show hours: Friday and Saturday, noon to 10 PM; Sunday, noon to 6 PM. General adult admission (including seminars and lectures), \(\$ 5\). Northeast Exposition, PO Box 678, Brookline Village MA 02147. (617) 522-4467. Press info: Jane Badgers \& Co., (617) 244-5305, 523-5563.

\section*{Philadelphia PA}

IECI ' 80 , the Sixth Annual Conference and Exhibit on Industrial and Control Applications of Microprocessors, will return to Philadelphia's Sheraton Hotel next March 17-19, 1980. The Industrial Electronic and Control Instrumentation Society sponsors IECI '80. Call for Papers. Submit 10 copies of proposed paper in extended summary form, 500-600 words, and 40 -word abstract to: H. T. Nagle, Jr., Electrical Engineer, Auburn University, Auburn AL 36830, (205) 826-4330. Deadline: September 14, 1979; Notification of Acceptance: October 14, 1979; Final Manuscripts: January 11, 1980.

Please have calendar announcements in our hands at least three months before the month of the issue in which you want the announcement to appear. Keep announcements short and to the point, and send them to the attention of the managing editor to assure their finding their way to the editorial department. Thank you.

\title{
ATTENTION ELF OWNERS ANNOUNCING QUEST SUPER BASIC
}

At last a Full Size Basic for 1802 systems. A Tiny Basic Source now available \(\$ 19.00\) complete function Basic including two dimen- \(\mathbf{S - 1 0 0}\) Siot Expansion. Add 3 more \(\mathrm{S}-100\) siots to sional arrays, string variables, floating point, your Super Expansion Board or use as a 4 slot
arithmetic and 32 bit signed integer arithmetic \(\mathrm{S}-100\) Mother Board. Board without connectors arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with \(1 / 0\) routines. Easily adaptable on most 1802 systems. Requires 12 K RAM
minimum for Basic and user programs. Cassette minimum for Basic and user programs. Cassette version in stock now ior immewiate delivery.
ROM versions coming soon with exchange ROM versions coming soon with exchange
privilege allowing credit for cassette version. Super Basic on Cassette

\section*{\(\$ 40.00\)}

RCA Cosmac Super Elf Compute

Compare features before you decide to buy any other computer. There is no other computer on the market today that has all the desirabie beneFif is a small single board computer that does Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its
machine language and yet it is easily expanded machine language and yet it is easily expanded with addittonal memory, Fuil Basic, AsCiI
Keyboards, video character generation, etc.
Before you buy another small computer, see if it includes the following features: ROM monitor; State and Mode displays; Single step; Optional address displays; Power Supply; Audio Amplifier and Speaker, Fully socketed for all IC's: Real cost of in warranty repairs: Full documentation.
The Super Ell includes a ROM monitor for program loading, editing and execution with sing LE cluded in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the unlque Quest address and data bus displays before, during and after executing instructions. Also, CPU mode and instruction cycle are decoded and displayed on 8 LED indicators. An RCA 1861 video graphics chip allows you to connect to your own TV with an Inexpen sive video modulator to do graphics and games. There is a
speaker system included for writing your own speaker system included for writing your own music or using many music programs already written. The speaker amplifier may also be used to drive relays for control purposes.

\section*{Super Expansion Board with Cassette Interface \$89.95}

This is truly an astounding value! This board has been designed to allow you to decide how you want it optioned. The Super Expansion Board comes with 4 K of fow power RAM fully addresstect and a cassette intorface. Provisions have been made for all other options on the same board and it fits neatly into the hardwood cabinet alongside the Super Eil. The board includes slots for up to 6 K of EPROM (2708, 2758, 2716 or TI 2716) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor \(\$ 19.95\) is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader/ editor and error checking multi file cassette read/write software, (relocatible cassette nile) another exclusive from Quest. It incluuess register save and readout, block move capability and
video graphics driver with blinking cursor. Break video graphics driver with blinking cursor. Break points can be used with the register save foature to isolate program bugs quickily, then foiliow with
single step. The Super Monitor is written with single step. The Super Monitor is written with
subroutines allowing users to take advantage of
Montir Compler

Multi-volt Computer Power Supply \(8 \mathrm{v} 5 \mathrm{amp}, \pm 18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp},-5 \mathrm{v}\)
\(.5 \mathrm{amp}, 12 \mathrm{v} .5 \mathrm{amp},-12\) option. \(\pm 5 \mathrm{v}, \pm 12 \mathrm{v}\) are regulated. Kit \(\$ 29.95\). Kit with punched frame \(\$ 37.45\). Woodgrain case \(\$ 10.00\)
\(\$ 9.95\)
Coming Soon: High resolution alpha/numerics with color graphics expandable up to \(256 \times 192\) resolution for less than \(\$ 100\). Economical versions for other popular 1802 systems also. 16K Dynamic RAM board expandable to 32 K for less than \(\$ 150\).
\(\$ 106.95\)
24 key HEX keyboard includes 16 HEX keys plus load, reset, run, walt, Input, memory protect, moniter select and single step. Large, on board displays provide output and optional hlgh and iow address. There is a 44 pin standard connector slot for PC cards and a 50 pin connec tor slot for the Quest Super Expansion Board Power supply and sockets for all IC's are included in the price plus a detailed 127 pg . instruction manual which now includes over 40 pgs. 0 software info. including a series of lessons to help get you started and a music program and graphics target game.
Many schools and universities are using the Super EIf as a course of study. OEM's use it for training and research and development.
Remember, other computers only offer Super Elf features at additional cost or not at all. Compare before you buy. Super Elf KIt \$106.95, High address option \(\mathbf{5 8 . 9 5}\), Low address optlon 59.95. Custom Cabinet with drilled and labelled plexiglass front panel \(\$ 24.95\). Expansion Cabine with room for 4 S-100 boards \$1.00. NICad Battery Memery Saver KII \$6.95. All kits and options also come completely assembled and tested.
Questdata, a 12 page monthly software publication for 1802 computer users is available by subscription for \(\$ 12.00\) per year
Tiny Basic Cassette \(\mathbf{\$ 1 0 . 0 0}\), on ROM \(\mathbf{\$ 3 8 . 0 0}\), original Elf kit board \(\$ 14.95\)


\section*{Rockwell AIM 65 Computer}

6502 based single board with full ASCII keyboard and 20 column thermal printer. 20 char. alphanumeric display, ROM monitor, tully expandable. \(\$ 375.00\). 4 K version \(\$ 450.00\). 4 K Assembler \(\$ 85.00,8 \mathrm{~K}\) Basic Interpreter \(\$ 100.00\) Power supply assy. in case \(\$ 60.00\). AIM 65 in thin briefcase with power supply \(\$ 485.00\).
Not a Cheap Clock Kit \$14.95 ncludes everything except case. 2-PC boards. 6-.50" LED Displays. 5314 clock chip, transformer, all components and full instructions. Orange displays also avail. Same klt w/.80 dispiays. Red only. \(\mathbf{\$ 2 1 . 9 5}\) Case \(\$ 11.75\)

\section*{Video Modular KIt}
\(\$ 8.95\)
Convert your TV set into a high quality monitor Convert your V set into a high quality monitor
without affecting normal usage. Complete kit with full instructions.

S-100 Computer Boards
8K Static RAM Kit Godbout
16 K Static RAM Kit
24K Static RAM Kit
32K Dynamic RAM Kit
64K Dynamic RAM Kit
8K/16K Eprom Kit (less PROMS)
Video Interface Kit
Extender Board \(\$ 8.99\)
79 IC Update Master Manual \(\$ 35.00\) Complete IC data selector, 2500 pg . master reference guide. Over 50,000 cross references. Free update service through 1979. Domestic postage \(\$ 3.50\).
orders

Auto Clock Kit
DC clock with \(4.50^{\circ}\) displays. \(\$ 17.95\) MA-1012 module with alarm option. includes light dimmer, crystal timebase PC boards. Fully regulated, comp. instructs. Add \(\$ 3.95\) for beautiful dark gray case. Best value anywhere.

\section*{Stopwatch KIt}
\(\$ 26.95\)
Full six digit battery operated. \(2-5\) volts. 3.2768 MHz crystal accuracy. Times to 59 min. , 59 sec., \(991 / 100\) sec. Times std., split and Taylor. 7205 chip, all components minus case. Full instructions.
NiCad Battery Fixer/Charger KIt
Opens shorted cells that won't hold a charge and then charges them up, all in one kit w/full parts and instructions.

PROM Eraser
Will erase 25 PROMs in 15 minutes. Ulira-
Hickok 3½ Digit LCD Multimeter Bat//AC oper. \(0.1 \mathrm{mv}-1000 \mathrm{v}\). 5 ranges. \(0.5 \%\) accur. Resistance 6 low power ranges 0.1 onm-20. \(1 /\) O displays, auto zero, polarity, over range. \(\$ 69.95\).

DIgital Temp. Meter KIt \(\$ 39.95\) Indoor and outdoor. Switches back and forth. Beautiful. \(50^{*}\) LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure \(-100^{\circ}\) to Beautiful woodgrain case w/bezel \(\$ 11.75\)

- Double Density Drive * One Double Density Controller w/Case \& P.S.

Add to your EXIDY, HORIZON, and other S-100 computers.
 Case \& P.S. - CPM \& Basic "E",
4. MPI B51-5 \(1 / 4^{n}, 40\) Manual

4. MPI B51-5 \(1 / n^{n}, 40\) tracks.
5. Shugart SA400-5 \({ }^{1 / 4}, 35\) rac
279.00
6. Siemens/GSI FDD \(100-88^{\prime \prime}\)
7. Shugart 800/801R \(8^{\prime \prime}\)....

\section*{EXPANDORAM MEMORY KITS \(\star\) Bank Selectable \(\star\) Uses 41 \\ * Write Protect \(\quad\) Power 8VDC, \(\pm 16\)
* Phantom
\&owest Cost/Bit Expando 32 Kit (4115) Expando 64 Kit (4116) \\ 8K \(\$ 158.00\)
16 K
\(\$ 199.00\) \\ \(24 \mathrm{~K} \$ 299.00\) \\ 32 K
48 K
4869.0
64 K \(\$ 469.00\)}
IMS STATIC RAM BOARDS
 Recommended by Alphamicrosystems
\begin{tabular}{rrr} 
& 250 ns & 450 ns. \\
8K Static & \(\$ 209.00\) & \(\$ 189.00\) \\
16 K Static & \(\$ 449.00\) & \(\$ 399.00\) \\
32K Static & \(\$ 799.00\) & \(\$ 699.00\) \\
\hline
\end{tabular}


\section*{\(\infty\)}

ANADEX PRINTER
Model DP-8000 compact, impact, parallel or
serial. Sprocket feed, 80 cols, serial. Sprocket feed, 80 cols,
84
lines \(/ \mathrm{min} ., ~ b i-d i r e c t i o n a l . ~\) New only .... \(\$ 895.00\)



KEYBOARD ASCII ENCODED


 rollover, lighted shift lock, control, escape and repeat functions. Litd Qty \(63 \mathrm{KEY} \$ 59.95\)


Eraser
Model U
Model UVs-11E \$69.95

Holds 4 Eprom's at a
Backed by 45 years Model S-52T. .. \$265.00

TARBELL FLOPPY CONTROLLER
Card assembled and tested for use with Shugart
TARBELL FLOPPY CONTROLLER
Card assembled and tested for use with Shugart
Drives \(\$\) SALE PRICE only \(\$ 229.00\)

ACOUSTIC COUPLER SPECIAL AJ MODEL A3O
SPECIAL PURCHASE OF SURPLUS UNITS
AVAILABILITY LIMITED


\section*{Z-80/2-80A/8080 CPU BOARD * On board 2708 * 2708 included ( 450 ns.)
\(\star\)
Asower on jump completely socketed
 \\ \#For 4 MHz Speed Add \(\$ 15.00\) \\ \(\$ 99.95\)
\(\$ 149.95\) \\ 8080 Kit}

\section*{S-100 MOTHERBOARD SPECIAL \\ 8 slot expandable w/9 conn.
reg \(\$ 69.95 . . . . . . . . . . . . . . . . . . . . . . . ~\)\(\$ 52.95\)}


Drives \$ SALE PRICE only \(\$ 229.00\)



Phone (714) 558-8813
TWX: 910-595-1565

Retail Store Open Mon. - Sat. Located at \(1310^{\circ} \mathrm{B}^{\prime \prime} \mathrm{E}\). Edinger
Santa Ana, CA 92705

\section*{For once inyourlie...live.}

A sleek graceful sailing vessel glides across the sometimes green, sometimes blue Caribbean. The cargo: you. And an intimate group of lively, fun-loving shipmates.

Uniform of the day: Shorts and tee shirts. Or your bikini if you want. And bare feet. Mission: A leisurely cruise to remote islands with names like Martinique, Grenada,

Antigua-those are the ones you've heard of. Before the cruise ends, you'll


Life aboard your big sailing yacht is informal Relaxed. Romantic.
There's good food. And 'grog'. And a few pleasant comforts... but any resemblance to a plush pretentious resort hotel is accidental.
Spend 6 days exploring paradise. Spend six nights watching the moon rise and getting to know interesting people. It could be the most meaningful experience of your life ... and it's easily the best vacation you've had.


A cruise is forming now. Your share from \$290. Write Cap'n Mike for your free adventure booklet in full color.
Come on and live.


AIM 65 is fully assembled, tested and warranted. With the addition of a low cost, readily available power supply, it's ready to start working for you.

AIM 65 features on-board thermal printer and alphanumeric display, and a terminal-style keyboard. It has an addressing capability up to 65 K bytes, and comes with a user-dedicated 1K or 4K RAM. Two installed 4K ROMS hold a powerful Advanced Interface Monitor program, and three spare sockets are included to expand on-board ROM or PROM up to 20K bytes.

An Application Connector provides for attaching a TTY and one or two audio cassette recorders, and gives external access to the user-dedicated general purpose I/O lines.

Also included as standard are a comprehensive AIM 65 User's Manual, a handy pocket reference card, an R6500 Hardware Manual, an R6500 Programming Manual and an AIM 65 schematic.

AIM 65 is packaged on two compact modules. The circuit module is 12 inches wide and 10 inches long, the keyboard module is 12 inches wide and 4 inches long. They are connected by a detachable cable.

\section*{THERMAL PRINTER}

Most desired feature on low-cost microcomputer systems
- Wide 20 -column printout
- Versatile \(5 \times 7\) dot matrix format
- Complete 64-character ASCII alphanumeric format
- Fast 120 lines per minute
- Quite thermal operation
- Proven reliability

\section*{FULL-SIZE ALPHANUMERIC KEYBOARD}

Provides compatibility with system terminals . . .
- Standard 54 key, terminal-style layout
- 26 alphabetic characters
- 10 numeric characters
- 22 special characters
- 9 control functions
- 3 user-defined functions

\section*{TRUE ALPHANUMERIC DISPLAY}

Provides legible and lengthy display . . .
- 20 characters wide
- 16 -segment characters
- High contrast monolithic characters
- Complete 64-character ASCII alphanumeric format

\section*{PROVEN R6500 MICROCOMPUTER SYSTEM DEVICES}

Reliable, high performance NMOS technology .
- R6502 Central Processing Unit (CPU), operating at 1 MHz . Has 65 K address capability, 13 addressing modes and true index capability. Simple but powerful 56 instructions.
- Read/Write Memory, using R2114 Static RAM devices. Available in 1 K byte and 4 K byte versions.
- 8K Monitor Program Memory, using R2332 Static ROM devices. Has sockets to accept additional 2332 ROM or 2532 PROM devices, to expand on-board Program memory up to 20 K bytes.
- R6532 RAM-Input/Output-Timer (RIOT) combination device. Multipurpose circuit for AIM 65 Monitor functions.
- Two R6522 Versatile Interface Adapter (VIA) devices, which support AIM 65 and user functions. Each VIA has two parallel and one serial 8 -bit, bidirectional I/O ports, two 2-bit peripheral handshake control lines and two fully-programmable 16-bit interval timer/event counters.

\section*{BUILT-IN EXPANSION CAPABILITY}
- 44-Pin Application Connector for peripheral add-ons
- 44-Pin Expansion Connector has full system bus
- Both connectors are KIM-1 compatible

\section*{TTY AND AUDIO CASSETTE INTERFACES}

Standard interface to low-cost peripherals
- 20 ma. current loop TTY interface
- Interface for two audio cassette recorders
- Two audio cassette formats: ASCII KIM-1 compatible and binary, blocked file assembler compatible
ROM RESIDENT ADVANCED INTERACTIVE MONITOR
Advanced features found only on larger systems . . .
- Monitor-generated prompts
- Single keystroke commands
- Address independent data entry
- Debug aids
- Error messages
- Option and user interface linkage

\section*{ADVANCED INTERACTIVE MONITOR COMMANDS}
- Major Function Entry
- Instruction Entry and Disassembly
- Display/Alter Registers and Memory
- Manipulate Breakpoints
- Control Instruction/Trace
- Control Peripheral Devices
- Call User-Defined Functions
- Comprehensive Text Editor

LOW COST PLUG-IN ROM OPTIONS
- 4K Assembler-symbolic, two-pass
- 8K BASIC Interpreter

\section*{POWER SUPPLY SPECIFICATIONS}
- + 5 VDC \(\pm 5 \%\) regulated @ 2.0 amps (max)
- + 24 VDC \(\pm 15 \%\) unregulated @ 2.5 amps (peak) 0.5 amps average

\section*{PRICE: \(\mathbf{\$ 3 7 5 . 0 0}\) (1K RAM)}

Plus \$4.00 UPS (shipped in U.S. must give street address), \$10 parcel post to APO's, FPO's, Alaska, Hawaii, Canada, \(\$ 25\) air mail to all other countries

We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send \(\$ 1.00\) (International send \(\$ 3.00\) U.S.) for airmail delivery of our complete catalog.

SYM-1, 6502-BASED MICROCOMPUTER
FULLY-ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's ready-to-use
ALL LSI IC'S ARE IN SOCKETS
28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 "SPECIAL" FUNCTIONS
EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY
KIM-1* HARDWARE COMPATIBILITY
The powerful 6502 8-Bit MICROPROCESSOR whose advanced architectural features have made it one of the largest selling "micros" on the market today.
THREE ON-BOARD PROGRAMMABLE INTERVAL TIMERS available to the user, expandable to five on-board.
4 K BYTE. ROM RESIDENT MONITOR and Operating Programs.
Single 5 Volt power supply is all that is required.
IK BYTES OF 2114 STATIC RAM onboard with sockets provided for immediate expansion to 4 K bytes onboard, with total memory expansion to 65, 536 bytes.
USER PROM/ROM: The system is equipped with 3 PROM/ROM expansion sockets for 2316/2332 ROMs or 2716 EPROMs
ENHANCED SOFTWARE with simplified user interface
STANDARD INTERFACES INCLUDE:
-Audio Cassette Recorder Interface with Remote Control (Two modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud)
-Full duplex 20 mA Teletype Interface
-System Expansion Bus Interface
-TV Controller Board Interface
-CRT Compatible Interface (RS-232)
APPLICATION PORT: 15 Bi-directional TTL Lines for user applications with expansion capability for added lines
EXPANSION PORT FOR ADD-ON MODULES (51 I/O Lines included in the basic system)
SEPARATE POWER SUPPLY connector for easy disconnect of the d-c power
AUDIBLE RESPONSE KEYPAD


Synertek has enhanced KIM-1* software as well as the hardware. The software has simplified the user interface. The basic SYM-1 system is programmed in machine language. Monitor status is easily accessible, and the monitor gives the keypad user the same full functional capability of the TTY user. The SYM-1 has everything the KIM-1* has to offer, plus so much more that we cannot begin to tell you here. So, if you want to know more, the SYM-1 User Manual is available, separately.

SYM-1 Complete w/manuals
\(\$ 249.00\)
SYM-1 User Manual Only
7.00

\section*{SYM-1 Expansion}
75.00

Expansion includes 3 K of 2114 RAM chips and \(1-6522\) 1/O chip. SYM-1 Manuals: The well organized documentation package is complete and easy-to-understand.
SYM-1 CAN GROW AS YOU GROW. It's the system to BUILD.ON. Expansion features that are available:
BAS-1 8K Basic ROM (Microsoft Basic) 129.00
Kim-2 (Complete terminal less monitor)
349.00

\section*{QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 \& AIM 65}

These boards are set up for use with a regulated power supply such as the one below, but, provisions have been made so that you can add onboard regulators for use with an unregulated power supply. But, because of unreliability, we do not recommend the use of onboard regulators. All I.C.'s are socketed for ease of maintenance. All boards carry full 90 -day warranty.
All products that we manufacture are designed to meet or exceed industrial standards. All components are first qualtiy and meet full manufacturer's specifications. All this and an extended burn-in is done to reduce the normal percentage of field failures by up to \(75 \%\). To you, this means the chance of inconvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of less than forty-eight hours for repair.
Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after receipt, complete, in original condition, and in original shipping carton; we will give you a complete credit or refund less a \(\$ 10.00\) restocking charge per board.

\section*{VAK-1 8-SLOT MOTHERBOARD}

This motherboard uses the KIM-4* bus structure. It provides eight (8) expansion board sockets with rigid card cage. Separate jacks for audio assette, TTY and power supply are provided. Fully buffered bus.

VAK-1 Motherboard
\(\$ 129.00\)

\section*{VAK-2/4 16K STATIC RAM BOARD}

This board using 2114 RAMs is configured in two (2) separately addressable 8 K blocks with individual write-protect switches.
\begin{tabular}{ll} 
VAK-2 16K RAM Board with only & \(\$ 239.00\) \\
8K of RAM ( \(1 / 2\) populated) & \\
VAK-3 Complete set of chips to & \(\$ 175.00\) \\
expand above board to 16K \\
VAK-4 Fully populated 16K RAM & \(\$ 379.00\)
\end{tabular}

VAK-4 Fully populated 16K RAM
\$379.00
VAK-5 2708 EPROM PROGRAMMER
This board requires \(a+5\) VDC and \(\pm 12 \mathrm{VDC}\), but has a DC to DC
multiplyer so there is no need for an additional power supply. All software is resident in on-board ROM, and has a zero-insertion socket. VAK-5 2708 EPROM Programmer
\$269.00

\section*{VAK-6 EPROM BOARD}

This board will hold 8 K of 2708 or 2758 , or 16 K of 2716 or \(25 i 6\) EPROMs. EPROMs not included.

VAK-6 EPROM Board \$129.00
VAK-7 COMPLETE FLOPPY-DISK SYSTEM (May '79)

\section*{VAK-8 PROTYPING BOARD}

This board allows you to create your own interfaces to plug into the motherboard. Etched circuitry is provided for regulators, address and data bus drivers; with a large area for either wire-wrapped or soldered IC circuitry.

VAK-8 Protyping Board \(\$ 49.00\)

\section*{POWER SUPPLIES}

ALL POWER SUPPLIES are totally enclosed with grounded enclosures for safety, AC power cord, and carry a full 2-year warranty. FULL SYSTEM POWER SUPPLY
This power supply will handle a microcomputer and up to 65 K of our VAK-4 RAM. ADDITIONAL FEATURES ARE: Over voltage Protection on 5 volts, fused, AC on/off switch. Equivalent to units selling for \(\$ 225.00\) or
more.
Provides + 5 VDC@ 10 Amps \& \(\pm 12\) VDC @ 1 Amp
VAK-EPS Power Supply
\(\$ 125.00\)
\(\$ 41.50\)

Put a computer in your car, which gives you the most effective and functional cruise control ever designed, plus complete trip computing, fuel management systems, and a remarkable accurate quartz crystal time system. So sımple a child can operate, the new CompuCruise combines latest computer technology with state-of-the-art reliability in a package which will not likely be available on new cars for years to come Cruise Control • Time E. T. Lap Timer Alarm, - Time, Distance, Fuel - To Arrival - Time, Distance, Fuel to Emptytance, Fuel to Empty
Time, Distance and Time, Distance and
Fuel on Trip - Current Fuel on Trip • Current GPH • Fuel Used, Distance since Fillup Current and Aver-age-Vehicle Speed Inside, Outside or Coolant Temperature - Battery Voltage English or Metric Display. \(\$ 199.95\)


FLOPPY DISK STORAGE BINDER This black vinyl three-ring binder comes with ten transparent plastic sleeves which accommodate either twenty, five-inch or ten, eight-inch floppy
disks. disks. The plastic sleeves may be or-
dered separately and added as needed. A contents file is included with each sleeve for easy identification and organizing. Binder \& 10 holders \$14.95 Part No. B800; Extra holders \(95^{\circ}\) each. Part No. 800


OPTO-ISOLATED PARALLEL INPUT BOARD FOR APPLE II
There are 8 inputs that can be driven from TTL logic or any 5 volt source. The circuit board can be plugged into any of the 8 sockets of your Apple II. It has a 16 pin socket for standard dip ribbon cable connection.
Board only \$15.00. Part No. 120, with parts \$69.95. Part No. 120A.


\section*{TIDMA}
- Tape Interface Direct Memory Access •Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate - S-100 bus compatible • Board only \(\$ 35.00\) Part No. 112 , with parts \(\$ 110\) Part No. 112A


\section*{SYSTEM MONITOR} 8080. 8085, or Z-80 System monitor for use With the TIDMA board. There is no need for the with pacumentation \(\$ 12.95\).

How to Profit from Your Personal Computer
Professional, Business, and Home Applications
useful reading for the small businessman, contemplating a computer, or for the personal computer advocate contemplating a business application." Kilobuad. By TG. Lewis. HAYDEN 78-2780. \$895

\section*{ASCII KEYBOARD}

TTL \& DTL compatible • Full 67 key array - Full 128 character ASCII output • Positive logic with outputs resting low \(\cdot\) Data Strobe - Five user-definable spare keys • Standard 22 pin dual card edge connector \(\bullet\) Requires \(+5 \mathrm{VDC}, 325 \mathrm{~mA}\). Assembled \& Tested. Cherry Pro Part No. P70-05AB. \$135.00.


\section*{ASCII KEYBOARD}

53 Keys popular ASR-33 format - Rugged G-10 P. C. Board - Tri-mode MOS encoding - Two-Key Rollover • MOS/DTL/TTL Compatible - Upper Case lockout - Data and Strobe inversion option. Three User Definable Keys - Low contact bounce - Selectable Parity - Custom Keycaps • George Risk Mode 753. Requires \(+5,-12\) volts. \(\$ 59.95\) Kit.

\section*{ASCII TO CORRESPONDENCE CODE CONVERTER}

This bidirectional board is a direct replacement for the board inside the Trendata 1000 terminal. The on board connector provides RS-232 serial in and out. Sold only as an assembled and tested unit for \(\$ 229.95\). Part No. TA 1000 C

\section*{DISK JACKET \({ }^{\text {m }}\)}

Made from heavy duty .0095 matte plastic with reinforced grommets. The minidiskette version holds two 5-1/4 inch diskettes and will fit any standard three ring binder. The pockets to the left of the diskette can be used for listing the contents of the disk. Please order only in multitudes of ten. \(\$ 9.95 / 10\) Pack.


\section*{INTERNATIONAL MICROPROCESSOR} DICTIONARY
English, French, Danish, German, Italian, Hungarian. Norwegian, Polish, Spanish, Swedish. 10 Ianguages, 28 pp
SYBEX. Ref. IMD. SYBEX. Ref. IMD.
\(\$ 4.95\)

TTL COOKBOOK Bk 1063 - by Don Lancaster. Explains what TTL is, how it works, and how to use it. Discusses practical applications, such as a digital counter and display system, events counter, electronic stopwatch, digital voltmeter and a digital tachometer. \(\$ 8.95\)


MICRO-
PROCESSOR LEXICON - ACRONYMS AND DEFINITIONS
Bk 1040 - compiled by the staff of SYBEX, is a convenient reference in pocket-size format. Sections include acronyms and definitions, part numbers and their definitions,
\(\mathrm{S}-100\) signals, S-100 signals. RS232 signals, IEEE
499 signals, micro499 signals, microcroprocessors. JETDS summary (miltary and a code con-

RS-232/20mA INTERFACE
This board has two passive, opto-isolated circuits. One converts RS-232 to 20 mA , the other converts 20 mA to RS232. All connections go to a 10 pin edge connector. Requires +12 and -12 volts. Board only \$9.95. part no. 7901 , with part no. 7901, with
parts \(\$ 14.95\) Part parts \(\$ 14\)
No. 7901A.


\section*{COMPUCOLOR II}

Model 3, 8K \$13.95. Model 4, 16K \$15.95. Model 5, 32K \$18.95. Prices include color monitor, computer and one disk drive.


\section*{PET COMPUTER}

\section*{With 32 K \& monitor} \$1195. Dual Disk Drive - \$1195.

appla II
16K - \$1095, 32K \$1195, 48K - \$1293. Disk \& cont. \$589


PARALLEL TRIAC OUTPUT BOARD FOR APPLE II

This board has 8 triacs capable of switching 110 volt 6 a.mp loads ( 66 U watts per channel) or a total of 5280 watts. Board only \(\$ 15.00\) Part Nr 210, with parts \(\$ 119.95\) Part Nart \(N\)


\section*{RS-232/ TTL INTERFACE}
- Converts TTL to RS-

232, and converts RS232 to TTL • Two separate circuits Re quires -12 and +12 volts - All connections go to a 10 pin gold plated edge connector - Board only \(\$ 4.50\) Part No. 232 , with
parts \(\$ 7.00\) Part No. 232A 10 Pin edge connector \$3.00 Part No. 10P

- Type 103 - Full or half duplex Works up to 300 baud - Originate or Answer - No coils, only low cost components - TTL in-
put and output-serial put and output-serial
- Connect \(8 \Omega\) speaker and crystal mic. directly to board Uses XR FSK demodulator - Requires +5 volts - Board only \(\$ 7.60\) Part No. 109 with parts \$27.50 Part No. 109A


DISKETTES


Box of 10, 5" \$29.95. 8" \$39.95. Plastic box, holds 10 diskettes, \(5^{\prime \prime}\) - \$4.50, \(\mathbf{8}^{\prime \prime}\) - \$6.50

\section*{RS-232/TTY INTERFACE}

This board has two active circuits, one converts RS-232 to 20 mA , and the other converts 20 mA to RS-232. Requires +12 and -12 volts. Board only \$4.50 Part No. 600, with parts \$7.00 Part No. 600A.


\section*{S-100 BUS} ACTIVE TERMINATOR

Board only \$14.95 Part No. 900, with parts \$24.95 Part No. 900A


APPLE II \% SERIALI/O INTERFACE

Baud rate is continuously adjustable from 0 to 30,000 - Plugs into any peripheral connector - Low current drain. RS-232 input and output - On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address - SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer - Program for using an Ather serial for a video or an intelligent terminal. Also can output in correspondence code to Also can output in correspondence code to interface with some selectrics. Part No.
watches DTR \(\bullet\) Board only \(\$ 15.00\). 2. with parts \(\$ 42.00\) Part No. 2A, assembled \$62.00 Part No. 2C

\section*{8K EPROM PIICEON}

Saves programs on PROM permanently (until erased via UV light) up to 8 K bytes. Programs may be directly run from the program saver such as fixed routines or assemblers. - S100 bus compatible - Room for 8 K bytes of EPROM non-volatile memory ( 2708 's). •Onboard PROM programming - Address relocation of each 4 K of memory to any 4 K boundary within 64 K - Power on jump and reset jump option for "turnkey" systems and computers without a front panel - Program saver software available - Solder mask both saver software available or der mask both sides e Full silkscreen for easy assembly.
Program saver software in 12708 EPROM Program saver software in 12708 EPROM
\(\$ 25\). Bare board \(\$ 35\) including custom coil, board with parts but no EPROMS \$139, with 4 EPROMS \$179, with 8 EPROMS \$219.


\section*{WAMECO PRODUCTS WITH}

ELECTRONIC SYSTEMS PARTS
FDC-1 FLOPPY CONTROLLER BOARD will drive shugart, pertek, remex 58 drives up to 8 drives, on board PROM with power boot up. will operate with CPM included). PCBD FPB-1 Front Panel. (Finaliy) iMSài size hex displays. Byte or instruction single step. MEM-1 A \&K×8 fully buffered, \(S-100\), uses 2102 type RAMS
( . . . . . . \$24.95, \$168 Kit aMB-12 MOTHER BOARD, 13 slot terminated, S-100 board only ...... \(\$ 34.95\) CPU-1 8080A Processor board \({ }^{\$ 89.95} 5\) 8 level vector interrupt PCBD \(\$ \mathbf{\$ 8 9} 9.95\) Kit RTC-1 Realtime clock board. Two independent interrupts. Software programmable.
 card PCBD

OこA 4Kヒ ÉPROM \(\$ 49.95\) with parts less ĖṗṘM்
\(\$ 25.95\) EPM-2 \(2708271616 K / 32 K\) EPROM card PCBD … 4 PBROMȮ \(\$ 24.95\) QMB-9 MOTHER BOARD. Short Version of QMB-12. 9 Slots PCBD ...... \(\$ \mathbf{i c} 90.95\)
MEM-2 16Kx8 Fully Buffered 2114 Board MEM-2 16Kx8 Fully Buffered 2114 Boari

\section*{T.V.}

\section*{TYPEWRITER}
- Stand alone TVT - 32 char/line, 16 lines, modifications for 64 char/line included - Parallel ASCII (TTL) input - Video output - 1K on board memory - Output for computer controlled curser Auto scroll - Nondestructive curser Curser inputs: up, down, left, right, home, EOL EOS - Scroll up, down - Requires +5 volts at 1.5 amps , and -12 at 1.5 amps, and -12
volts at 30 mA voits at 30 mA - All 7400, TTL chips \(\bullet\) Char. gen. 2513 • Upper case only \(\bullet\) Board only \(\$ 39.00\) Part No. 106, with parts \$145.00 Part No. 1064


UART \& BAUD RATE GENERATOR
- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator - Baud rates 110, 150, 300, 600. 1200, and 2400 . Low power drain +5 volts and -12 volts required - TTL compatible - All characters patiblain a start bit 5 contain a start bit, 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. - All connections go to a 44 pin gold plated edge connector - Board only \(\$ 12.00\) Part No. 101, with parts \(\$ 35.00\) Part No. 101A, 44 pin edge connector \(\$ 4.00\) Part No. 44 P


\section*{HEX ENCODED} KEYBOARD

This HEX keyboard has 19 keys, 16 encoded with 3 user definable. The encoded TTL outputs, 8-4-2-1 and STROBE are debounced and available in true and complement form and complement form. Four onboard LEDS indicate the HEX code gey depression The key depression. The board requires a single +5 volt supply. Board only \(\$ 15.00\) Part No. HEX-3, with parts \(\$ 49.95\) Part No. HEX3A. 44 pin edge connector \$4.00 Part No. 44P.


\section*{DC POWER SUPPLY}
- Board supplies a regulated +5 volts at 3 amps., \(+12,-12\), and -5
volts at 1 amp. \(\bullet\) Power required is volts at 1 amp. - Power required is 8 volts AC at 3 amps., and 24 volts AC C.T. at 1.5 amps . Board only \(\$ 12.50\) Part No. 6085, with parts excluding transformers \$42.50 Part No. 6085A


TO Order: Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order. hज्रा shipping charges will be added. CA residents add \(6.5 \%\) for tax. Outside USA add 10\% for air mail postage and handling. Payment must be in U. S. dollars. Dealer inquiries invited. 24 hour order line (408) 226-4064.

Send for FREE Catalog . . . a big self-addressed envelope with \(41^{\circ}\) postage gets it fastest!


APPLE II 16K \＄995 ！
Disk II with Controller \＄495 16K Mem．Exp．\(\$ 89\)
S－100 A－D，D－A \＄120 KIT
16 A－D INPUT PORTS！！
8 D－A OUTPUT PORTS！
ON BOARD KLUGE AREA FOR
CUSTOM CIRCUITS！
ALL INPUTS AND OUTPUTS 0－＋5 VOLTS！
4 MHz MODIFICATION
KIT FOR S．D．SYSTEMS EXPANDORAM \(\$ 10\)

\section*{J．E．S．GRAPHICS P．O．BOX 2752 TULSA，OK 74101 ［918］－742－7104}



\section*{SWTPC OWNERS}

ANALOG－TO－DIGITAL CONVERTER

Connect EYES and EARS to your
M－6800 with a complete
12 BIT ADC SYSTEM．
The complete system kit Inctudes the \(12 \mathrm{blt} A D C\) ，ane tomperature senser and a pewer centroller．

－occupies one swtpc 30 PIN I／O Slot
－FULL 12 bit resolution plus sign and
OVERFLOW Bits
－ 16 single ended or 8 differential inputs
－continuous or demand data conversion
－INTERRUPT GENERATED AT END OF CONVERSION STRAP SELECTABLE
－o．im resolution as digital voltmeter
－temperature sensors available now－ ADDITIONAL SENSORS UNDER DEVELOPMENT
－115VAC， 6 GA POWER CONTROLLER SUPPLIED WITH SYSTEM KIT OR SEPARATELY
－EXTENSIVE DOCUMENTATION AND SOFTWARE SUPPLIED WITH KIT

EXTENDER BOARDS WITH 5VDC LOGIC PROBE POWER SUPPLY ALSO AVAILABLE

ADC SYSTEM KIT－Includes \(A D C\) ，
solid state temperature
sensor and power controller \＄109．95
ADC KIT－w／o accessories
\(\$ 89.95\)
Additional Temperature Sensors \(\$ 12.95\)
Additional Controller kit
\(\$ 15.95\)
EXTENDER BOARDS－with \(5 u d c\) power supply
METAMICS，Inc．M93
4324 SW 35th Terr
Cash or COD
Fla Res Add 4\％Tax

\section*{＇68＇MICRO JOURNAL \({ }^{\text {TM }}\)}

The only ALL 6800 Com－ puter Magazine．
－ーーー С CHARTER
SUBSCRIPTION SPECIAL
1－Year \(\$ 10.50 \quad 2\) Years \(\$ 18.50\) 3 Years \＄26．50
OK，PLEASE ENTER MY SUBSCRIPTION
Bill my：M／C \(\square\) — VISA \(\square\)
Card \＃
Expiration Date
For \(\square 1-\mathrm{Yr}\) ．\(\square 2\) Yrs．\(\square 3\) Yrs．
Enclosed：\＄
Name
Street
City
State
Zip
＇68＇MICRO JOURNALTM 3018 Hamill Road HIXSON，TN 37343

CAR COMPUTER
 \(\$ 184.00\) w／cruise \(\$ 149.00\)
wo／cruise
Shipping included．Calif．res．add \(6 \%\) sales tax
－clock－12 quartz，stopwatch \＆alarm
－elapsed time－trip time－time to arrival
－trip distance－time to arival－to empty
－distance traveled \＆gas used since filling
－fuel－to empty－to arrival－used on trip
－mpg or gph－current or average for trip
－cruise control，current speed or preset
－converts figures to metric if desired
－speed－current or trip average
－temperature－inside－outside
－bright fluorescent display \＆much more
Expiration

－business －educational －PERSONAL
14052 East Firestone Blva．• Santa Fe Springs．CA 90670 （213）921－2111 •（714）739－0711

\section*{WIERO}

\section*{TME 6502 ЛOURNAB}

Presents a bound anthology，The Best of MICRO Volume 1，containing selected articles from the first year of MICRO；nearly 200 pages about the KIM，APPLE，PET and other 6502 bas－ ed systems．
\(\$ 6.00\)
The companion anthology，All of MICRO Volume 2，contains every arti－ cle from six recent issues of the 6502 journal． \(\$ 8.00\)
These valuable reference works are available at computer stores or from：

MICRO－P．O．Box 6502 Chelmsford，MA 01824 ～M74
Please add \(\$ 1.00\) surface or \(\$ 4.00\) air mail postage on mail orders． Subscribe to MICRO at only \(\$ 15.00\) for 12 monthly issues．

\section*{SPECIAL}

155.
550.
\(\$ 1550\).
\(\$ 690\).
\(\$ 690\).
\(\$ 895\).
\(\$ 895\).
\(\$ 1090\).
\(\$ 799\).
\(\$ 899\)
\(\$ 899\).
\(\$ 1099\).
\＄ 799.
\(\$ 2249\) ．
\(\$ 4895\).
\(\$ 895\).
\(\$ 995\) ．
\(\$ 1045\).
\(\$ 390\).
390.
189.
189.
+229.
220.
749.

Mutit Business Computar \(\mathbf{S}_{\text {ystems }}\)
－M88
Portland Ct 06480 203 342－2747

\section*{16K EPROM CARD-S 100 BUSS}


\section*{\(\$ 59.95\) KIT}

OUR
BEST
SELLING KIT!

USES 2708's!
Thousands of personal and business systems around the world use this board with complete satisfaction. Puts 16 K of software on line at ALL TIMES! Kit features a top quality soldermasked and silk-screened PC board and first run parts and sockets. All parts (except 2708's) are included. Any number of EPROM locations may be disabled to avoid any memory conflicts. Fully buffered and has WAIT STATE capabilities.
\begin{tabular}{|c|c|}
\hline OUR 450NS 2708'S \\
ARE \$8.95 EA. WITH \\
PURCHASE OF KIT & ASSEMBLED \\
AND FULLY TESTED \\
\hline ADD \(\$ 25\) \\
\hline
\end{tabular}

ARE \(\$ 8.95\) EA. WITH
PURCHASE OF KIT

\section*{16K STATIC RAM KIT-S 100 BUSS}

\section*{s279 кıT}

PRICE CUT!
FULLY
STATIC, AT DYNAMIC PRICES

\section*{WHY THE 2114 RAM CHIP?} We feel the 2114 will be the next industry standard RAM chip (like the 2102 was). This means price. availability, and quality will all be good! Next. the 2114 is FULLY STATIC' We feel this is the ONLY way to go on the S-100 Buss! We've all heard the HORROR stories about some Dynamic Ram Boards having trouble with DMA and FLOPPY DISC DRIVES. Who needs these kinds of problems? And finally, even among otter 4 K
Static RAM's the 2114 stands out! Not all 4 K static Rams are created equal! Some of the other 4 K 's Rams are clocked chip enable lines and various timing windows Just as critical as Dynamic RAM's. Some of our competitor's 16 K boards use these "tricky" devices. But not us! The 2114 is the ONLY logical
choice for a trouble-free, straightforward design.

\section*{KIT FEATURES}

1 Addressable as four separate 4 K Blocks 2 ON BOARD BANK SELECT circuitry. line!
3 Uses 2114 (450NS) \(4 K\) Static Rams.
4 ON BOARD SELECTABLE WAIT STATES. 5 Double sided PC Board, with solder mask and
silk screened layout Gold plated contact fingers silk screened layout. Gold plated contact finger 6. All address and data lines fully buffered 8 PHANTOM is jumpered to PIN 67 . 9 LOW POWER under 2 amps TYPICAL from the * 8 Volt Buss. 10. Blank PC Board can be populated as any multiple of 4 K .

> BLANK PC BOARD W/DATA-\$33

\section*{LOW PROFILE SOCKET SET- \(\$ 12\)}

SUPPORT IC'S \& CAPS- \(\$ 19.95\)
ASSEMBLED \& TESTED-ADD \(\$ 30\) 2114 RAM'S-8 FOR \(\$ 69.95\)

8K LOW POWER RAM KIT-S 100 BUSS 250 NS SALE!

(450 NS RAMS!)
Thousands of computer systems rely on this rugged, work horse, RAM board. Designed for error-free, NO HASSLE, systems use.

\section*{KIT FEATURES:}

Doubled sided PC Board with solder mask and silk screen layout. Gold plated contact fingers.
All sockets included
Fully buffered on all address and data lines.
Phantom is jumper selectable to pin 67.

FOUR 7805 regulators are provided
Blank PC Board w/Documentation
\(\$ 29.95\)
Low Profile Socket Set... 13.50 Support IC's (TTL \& Regulators) \(\$ 9.75\)
Bypass CAP's (Disc \& Tantalums) \(\$ 4.50\)

ASSEMBLED AND FULLY BURNED IN ADD \$30

\section*{16K STATIC RAM SS-50 BUSS}

\section*{s295 \\ KIT}

FULLY STATIC AT DYNAMIC PRICES

KIT FEATURES:
. Addressable on 16 K Boundaries
2. Uses 2114 Static Ram
3. Runs at Full Speed
FOR SWTPC 6800 BUSS!
4. Double sided PC Board. Solder mask and silk screened layout. Gold fingers.

\section*{ASSEMBLED AND TESTED - \$30}


BLANK PC BOARD-\$33
5. All Parts and Sockets included
6. Low Power: Under 2 Amps Typical

COMPLETE SOCKET SET-\$12

\section*{16K S-100 Dynamic Ram Board - \$149. \({ }^{95}\)}

ORIGINALLY PRICED AT \$429 each!
We purchased the remaining inventory of PT's popular 16K Ram Board when they recently closed their plant. Don't miss the boat! These are brand new, fully tested, ASSEMBLED and ready to go. All are sold with our standard 90 day limited warranty!!
72 Page Full Manual, Included Free!

\section*{> PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS!
> FACTORY CLOSE OUT - SPECIAL PURCHASE! \#16KRA \\ \\ PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS! \\ \\ PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS! \\ \\ FACTORY CLOSE OUT - SPECIAL PURCHASE! \\ \\ FACTORY CLOSE OUT - SPECIAL PURCHASE! \#16KRA} \#16KRA}

\section*{TM990 BUSS PROTOTYPE \& WIREWRAP BOARD}

For use with the Texas Instrument Series of 16 Bit Microcomputer Modules. Fully buss compatible. An inexpensive and quick way to expand the capacity of your TI computer. Made of G-10 Epoxy PC material. Gold plated contact fingers all plated through holes. High density, up to over 100 DIP's. Fully documented. \$70 each (OEM Discounts Available)

\section*{Z-80 PROGRAMMING MANUAL}

By MOSTEK, or ZILOG. The most detailed explanation ever on the working of the Z-80 CPU CHIPS. At least one full page on each of the 158 Z-80 instructions. A MUST reference manual for any user of the Z-80. 300 pages. Just off the press.
\$12.95

\title{
Boards or Complete Systems . . .
}

\section*{The best price and delivery is from MiniMicroMart!}


\section*{CROMEMCO SYSTEM 3}

\section*{List \(\$ 5990\) Purick \(\$ 4990\)}

Features \(4 \mathrm{MHz} \mathrm{CPU}, 32 \mathrm{~K}\) of RAM, dual PerSci floppy disk drives land provision for installing two additional drives), RS232C Interface, Printer Interface - assembled and tested, ready to use.
With 64 K of RAM. List \(\$ 6585 \quad \$ 5485\)
CROMEMCO SYSTEM 2
Similar to above, but with minifloppy drives and now including 64 K of RAM. List \$3990
\$3390


\section*{NORTH STAR} HORIZONS.
ABSOLUTELY BEST PRICES AND BEST DELIVERIES
NOW DOUBLE-\& QUAD-DENSITY

\section*{HORIZON 1 -}
16K, D-D, Kit, List \$1599 . . . \$1349

16K, D-D A\&T, List \$1899
32K, D-D, Kit, List \(\$ 1849\) 1599

32K, D-D, A\&T, List \$2099 1559

32K, Q-D, A\&T, List \$2349
1779
HORIZON 2 -
\begin{tabular}{llr} 
16K, D-D, Kit, List \(\$ 1999\) & \(\ldots\) & \(\mathbf{\$ 1 6 9 9}\) \\
16K, D-D, A\&T, List \(\$ 2349\) & \(\ldots\). & \(\mathbf{1 9 3 9}\) \\
32K, D-D, Kit, & List \(\$ 2249\) & \(\ldots\). \\
32K, D-D, A\&T, List \(\$ 2549\) & \(\ldots .2159\) \\
32K, Q-D, A\&T, List \(\$ 2999\) & \(\ldots\). & \(\mathbf{2 5 3 9}\)
\end{tabular}

16K, D-D, A\&T, List \$2349 . . . 1939
32K, D-D, A\&T, List \$2549 ... 2159
32K, Q-D, A\&T, List \$2999

\section*{CROMEMCO BOARDS}

4 MHz Single Card Computer Assembled \& Tested, List \$450 \$385

16K RAM Card with Bank Select

Assem. \& Tested, List \$595

\(\$ 495\)

Bytesaver II PROM Board and PROM Programmer (8KBS), Kit, without PROM \$125
Assem. \& Tested, List \$245 \$210
TU-ART Digital Interface, Kit (\$195) \$165
Assem \& Tested, List \$295 \$250
Disk Controller Card, Kıt, Lıst \$395. \$335
Assm. \& Tested, List \$495
\$419

\section*{Another Industry First from CROMEMCO}

The new \(\mathrm{Z}-2 \mathrm{H}\) - a 4-megabyte harddisk computer in table-top form. Includes 64 K of RAM, two floppy disk drives, console, and parallel printer interfaces. List \$9995

OUR PRICE: \$8489
11-Megabyte Hard Disk System
(single-drive system) List \$6995 OUR PRICE \$5939
22-Megabyte Hard Disk System List \$11,995
\(\$ 10,189\)

\section*{FLOPPY DISK SYSTEMS}

North Star Double-Density Controller \& Minifloppy Drive, Kit, (\$699) . . \$589 Assembled and Tested, List \$799 . \$674
Morrow Thinker Toys \({ }^{(®)}\) Discus 2D, Double-Density Controller with 8" drive, List \$1149 \(\$ 979\) with two 8" drives, List \$1944 . . . \$1649
Micromation Megabox, Double Density with two 8" drives, List \$2295 ... \$2054

\section*{20\% OFF}

\section*{XITAN DISK SOFTWARE}


Exidy SORCERER
Your best source for 8 K, 16K, \(32 K\) \& 48 K Sorcerers and all accessories. Call us!

\section*{10\% OFF on TRS-80's and accessories}

\section*{MEMORY BOARDS}

MiniMicroMart is your best source for all the leading S-100 memory boards -
North Star 16K RAM Board Kit, List \$399. OUR PRICE \$269 Assem. and Tested, List \$459 \$309 New North Star 32K RAM Board
with parity - Kıt, List \$599
\(\$ 499\)
Assem and Tested, List \$659
\$549
Super Buy on 16K Static Board \(4 \mathrm{MHz}, 16 \mathrm{~K}\) Problem Solvers, A\&T
\$319
New Super 64K Dynamic Board
from Measurement Control Systems, full oneyear warranty, fully socketed, avarlable partial Iy populated, A\&T
Complete w/all 64K, List \(\$ 795 \quad \$ 659\)
Populated with 48K, List \(\$ 695 \quad \$ 589\)
Populated with 32K, List \$595 \$509
SD Computer 32K Dynamic
ExpandoRam Kit
\$329
Morrow SuperRam \({ }^{\text {® }}\)
16K Static, 4 MHz , List \(\$ 369\)
\$299
32K Static, 4 MHz , List \(\$ 699\)
\$629
Dynabyte - A\&T, 1-yr. warranty
16K Static, 250ns, less write protect MSC-1625

ONLY \$359
32K Static, 250ns, MS-3225 . . 796

SHIPPING, HANDLING \& INSURANCE: Add \(\$ 2\) for boards, \(\$ 6\) for minifloppies, \(\$ 7.50\) per \(8^{\prime \prime}\) drive, \(\$ 12\) for Horizons. Assembled Cromemco systems shipped freight collect.
Prices quoted reflect cash discounts. Credit cards only \(2 \%\) higher. All prices subject to change and all offers subject to withdrawal without notice.
- WRITE FOR FREE CATALOG -

\title{
Terminals and Printers for every application . . .
}

- Limited Time Offer -

HAZELTINE 1500 only \$989

Check our price and delivery on the new HAZELTINE 1420 with lower case, numeric keypad, and 2-year warranty.


\section*{LEEDEX VIDEO 100 MONITOR}

12" low-cost black \& white Video Monitor
OUR PRICE: \$139
12" diagonal video monitor. Composite video input. Solid-state circuitry for stable, sharp picture. Video bandwidth \(-12 \mathrm{MHz} \pm 3 \mathrm{DB}\). Input impedance - 75 ohms. Resolution 650 lines min. IN central 80\% of CRT; 550 lines min . beyond central \(80 \%\) of CRT, ref: EIA RS-375. Dimensions - \(11.375^{\prime \prime}\) high, \(16.250^{\prime \prime}\) wide, 11.250 deep lexcluding video input connector). Weight -6.5 KG (14.3 lbs.) net.

\section*{ANADEX 80-COLUMN DOT MATRIX PRINTER}

Complete: upper and lower case ASCII char. set, bi-directional at 84 lines \(/ \mathrm{min}\). Features RS232 20/60 mil current loop and Centronix parallel interface. Ideal for use with TRS-80, Sorcerer, Cromemco, and North Star systems. OUR PRICE ONLY \$895

\section*{T.I. 810}

Bi-directional
150 cps
Logic
Seeking
Adjustable
Tractor
Call for our low, low prices

\section*{BANTAM 550 \\ from PERKIN ELMER}

Small in size, light in weight, and low in price - but on top of the list in features and performance.
- Upper and lower case
- Full \(24 \times 80\) format
- Sharp \(7 \times 10\) dot matrix Get everything you want without paying for things you don't need List: \(\$ 996\)


\section*{INTERTUBE II by Intertec}
- \(12^{\prime \prime}\) Display
- \(24 \times 80\) format
- 18-key numeric keypad
- 128 upper/lower case ASCII characters
- Reverse video, blinking
- Complete cursor addressing and control
- Special user-defined control function keys
- Protected and unprotected fields
- Line insert/delete and character insert/ delete editing
- Eleven special line drawing symbols

\section*{OUR PRICE \(\$ 799\)}


IP-225 w/Tractor, incl. 1210*, 1250 .

1221 (2K buffer), and 1241 Graphics Option

ONLY \$988
- 1210 Option is expanded and compressed print


DECwriter II
\$1490
Teletype 43 Printers startıng at \(\$ 880\) Lear Siegler ADM3A
\$849

The Fantastic Letter-Quality Printer at 55 cps
- CALL FOR PRICES -

\section*{CENTRONICS}
\begin{tabular}{cr}
730 New, friction, \& tractor & \(\$ 895\) \\
779 (60 cps) - same as TRS-80 printer \(\$ 979\) \\
with Tractor & \(\$ 1049\) \\
\(702-1\) (120 cps, bi-directional) & \(\$ 1995\) \\
703 (185 cps, bi-directional) & \(\$ 2395\)
\end{tabular}

SHIPPING, HANDLING, \& INSURANCE: Intertube, Bantam 550, Anadex, IP-125/225, Teletype 43's, Hazeltine 1500, and ADM3A can be shipped by UPS. Heavier printers shipped air or truck, freight collect.
Prices quoted reflect cash discounts. Credit cards only 2\% higher. All prices subject to change and all offers subject to withdrawal without notice.

\section*{- WRITE FOR FREE CATALOG -}

\section*{MiniMicroMart, Inc. \\ 1618 James St., Syracuse NY 13203 (315) 422-4467 \\ TWX 710-541-0431}


\title{
WAMECO THE COMPLETE PC BOARD HOUSE EVERYTHING FOR THE S-100 BUSS
}
* FPB-1 FRONT PANEL BOARDHex Displays, IMSAI Replaceable ...... \(\$ 54.95\)* FDC-1 FLOPPY DISC CONTROLLER BOARDControls up to 8 Discs\(\$ 45.00\)
* MEM-1A 8K BYTE 2102 RAM Board ..... \$31.95
* MEM-2 16K BYTE 2114 RAM Board ..... \$31.95
* CPU-1 8080A CPU Board With Vector Interrupt ..... \$31.95
* EPM-1 4K BYTE 1702A EPROM ..... \$29.95
* EPM-2 16K or 32K BYTE EPROM 2708 or 2176 interchangeable ..... \(\$ 30.00\)
* QMB-9 9 SLOT MOTHER BOARD Terminated ..... \(\$ 35.00\)
* QMB-12 12 SLOT MOTHER BOARD Terminated ..... \(\$ 40.00\)
* RTC REALTIME CLOCK Programmable Interrupts ..... \(\$ 27.95\)


CALIFORNIA COMPUTER SYSTEMS 16K RAM BOARD. Fully buffered addressable in 4 K blocks. IEEE standard for bank addressing 2114's PCBD Kit 450 NSEC PT-1 PROTO BOARD. Over 2,600 holes \(4^{\prime \prime}\) regulators. All S-100 buss functions labeled, gold fingers. PCBD PT-2 PROTO BOARD. Similar to PT-1 except setup to handle solder tail sockets.
PCBD
\$25.95


FOMMEALY CYEERCOM/SOLID STATE MUSIC. PB-1 2708 \& 2716 Programming Board with provisions for \(4 K\) or \(8 K\) EPROM. No external supplies require textool sockets. Kit ....................................... \(\$ 124.95\) CB-1 8080 Processor Board. 2K of PROM 256 BYTE RAM power on/rest Vector Jump Parallel port with
status Kit \(\$ 119.00\) PCBD
\(\$ 30.95\) \(\begin{array}{llll}\text { status Kit } & \$ 119.00 & \text { PCBD } & \text { Kit........ } \$ 30.95 \\ \text { MB-6B Basic } & 8 K \times 8 \text { ram uses } & 2102 \text { type rams, } \mathrm{S}-100\end{array}\) MB-6B Basic 8KX8 ram uses 2102 type rams, S-100
buss. Kit 450 NSEC \(\$ 139.95 \quad\) PCBD MB-7 \(16 K \times 8\), Static RAM uses \(\underset{\text { Kit }}{\mu} \mathrm{P} 410\) Protection,
fully buffered MB-8A 2708 EROM Board, S-100, 8K8X or 16 Kx 8 kit without PROMS \(\$ 75.00\) PCBD \(\$ 28.95\) MB-9 4KX8 RAM/PROM Board uses 2112 RAMS or 82S 129 PROM kit without RAMS or PROMS \(\$ 72.00\) 10-2 S-100 8 bit parallel \(/ 10\) port, \(2 / 3\) of boards is for
kludging. Kit \(\$ 46.00\) 10-4 Two serial I/C ports with full handshaking 20/60 ma current loop: Two parallel I/O ports.
Kit \(\$ 130.00\) PCBD.......... \(\$ 26.95\) VB-1B \(64 \times 16\) video board, upper lower case Greek, VB-1B \(64 \times 16\) video board, upper lower case Greek,
composite and parallel video with software, S-100. composite and parallel video with software, S-100.
Kit............. \(\$ 125.00\)
PCBD Altair Compatible Mother Board, \(11 \times 111 / 2 \times 1 / s^{\prime \prime}\). Board only … \(\$ 39.95\). With 15 connectors...... \(\$ 94.95\) Extended Board full size. Board only ............ \$ 9.49 With connector
SP-1 Synthesizer Board S-100
PCBD \(\$ 42.95\)

KIT....

\section*{WmC inc. WAMECO INC.}

FDC-1 FLOPPY CONTROLLER BOARD will drive shugart, pertek, remic \(5^{\prime \prime} \& 8^{\prime \prime}\) drives up to 8 drives shugart, pertek, remic \(5^{\prime \prime} \& 8^{\prime \prime}\) drives up to 8 drives,
on board PROM with power boot up, will operate with CPM (not included).
\(\$ 42.95\)
FPB-1 Front Panel. IMSAI size, hex displays. Byte, or instruction single step. CBD
\(\$ 47.50\)
MEM-1 8KX8 fully buffered, S-100, uses 2102 type rams. PCBD ...................................................... \(\$ 25.95\) OM-12 MOTHER BOARD, 13 slot, terminated, S-100 board only ........................................................... \(\$ 34.95\) CPU-1 8080A Processor board S-100 with 8 level vector interrupt PCBD ....................................... \$26.95 RTC-1 Realtime clock board. Two independent in-RTC-1 Realtime clock board. TwO independent in-
terrupts. Software programmable. PCBD ...... \(\$ 23.95\) terrupts. Software programmable. PCBD ....... \(\$ 23.95\)
EPM-1 1702A 4K Eprom card PCBD............\(\$ 25.95\)
EPM-2 \(2708 / 2716\) 16K/32K
EPROM CARD PCBD ...................................... \(\$ 25.95\)
QM-9 MOTHER BOARD, Short Version of QM-12. QM-9 MOTHER BOARD, Short Version of QM-12. MEM-2 \(16 \mathrm{~K} \times 8\) Fully Buffered 2114 Board PCBD
\begin{tabular}{|c|c|c|c|c|}
\hline 8080A & \$9.95 & 5101-8P & & \$ 8.40 \\
\hline 8212 & 2.49 & 2114 (450 & NS) low pwr & r... 7.25 \\
\hline 8214 & 4.49 & 2114 (250 & NS) low pwr & r... 7.99 \\
\hline 8224 & 3.49 & 2102A-2L & & 1.50 \\
\hline 2708 & 9.49 & 2102A-4L & & 1.2 \\
\hline \(5101-1 \mathrm{P}\) & 6.90 & 4116 & & 8/89.9 \\
\hline
\end{tabular}

(415) 592-1800
P. O. Box 424 - San Carlos, California 94070 Please send for IC, Xistor and Computer parts list \(\vee\) M39

\section*{SEPT SPECIAL SALE ON PREPAID ORDERS}

8KX8 RAM Fully buffered 450 NSEC. 2.5 amp typical assembled parts may be unmarked or house numbered. \(\$ 99.99\)


\section*{WITH WAMECO AND CYBERCOM PCBDS}

\section*{-2 with MIKOS \(=7\) 16K ram}

MEM-2 with MIKOS z 13 16K ram
with L2114 250 NSEC
9.95

MEM-1 with MIKOS \#1 450 NSEC 8K
\(\$ 119.95\)
\(\$ 94.95\)
MEM-1 with MIKOS \#3 250 NSEC 8K
RAM
\(\$ 144.95\)
OM-12 with MIKOS \#4 13 slot mother board
\(\$ 89.95\)
5 real ime clock MIKOS \#10 4K 1702 less

EPM-2 with MIKOS \#11 16-32K EPROMS less EPROMS
\(\$ 59.95\)
QM-9 with MIKOS \#12 9 slot mother
FPB-1 with MIKOS \(=14\) all parts
\(\$ 79.95\)

MIKOS PARTS ASSORTMENTS ARE ALL FACTORY PRIME
PARTS. KITS INCLUDE ANT PARTS LSTED AS REOUIRED PARTS. KITS INCLUDE ALL PARTS LISTED AS REOUIRED
FOR THE COMPLETE KIT LESS PARTS LISTED. ALL SOCKETS
number MASTERCHARGE. Send accounl number, Interbank will be added. Check or money order will be sent post paid in U.S. you are not a regular customer, please use charge. be a two-week delay for checks to clear. Calit. residents add turned IC's that have daen soldered to. Prices accept reon orders less than \(\$ 10.00\).

\section*{J -1 D \(コ\) Computer Products}


\section*{THE BIG Z \\ THE NEW Z-80 \\ CPU BOARD FROM JADE \\ Features Include: S-100 Compatible, available in 2 MHz or 4 MHz versions. On-board 2708, 2716, 2516, or 2532 EPROM can be addressed on any \(1 K, 2 K\), or \(4 K\) boundary, with power-on jump to EPROM. On-board EPROM may be used in SHADOW mode, allowing full 64 K RAM to be used. Automatic MWRITE generation if front panel is not used. On-board USART for synchronous or asynchronous RS232 operation (on-board baud rate generator). -Reverse-channel capability on USART allows use with buffered peripherals or devices with "not-ready" signal. 2 MHz - \\ Kit: CPU-30200K, 2 lbs \\ Assembled and Tested: \\ \(\$ 149.95\) Kit: CPU-30201K, 2 lbs \\ Assembled and Tested
CPU-30201A. 2 lbs \\ \(\$ 159.95\) \\ CPU-30200A, 2 lbs \\ \$209.95}

JADE'S DOUBLE DENSITY


KIT: \$249.00
- Single or Double Density Recording
- Full Size or Mini Floppy
- CP/M Compatible in either density
- Programmed Data Transfer. no DMA
- Controls up to 8 drives
- IBM format in either density - Software Selectable

Density
Assmb. \& Tstd: \(\$ 299.00\)
- This controler utilizes the proven reliability of the IBM standard format as well as the lastest phase-locked-loop for data separation \# All clocks are generated from an on-board crystal oscillator \(=\) Right precompensation is used to enhance data recovery reliability in the double density mode \(\quad\) Density selection is entirely transparent to the user a Single and double density diskettes can be mixed on the same system.

\section*{LEEDEX MONITOR}
- 12" Black and White - 12MH2 Bandwidih - Mandsome Plastic Case
> \$139.00

CABLES
MINI-DISK CABLE KIT: To connect two \(51 / 4^{\prime \prime}\) drives to disk controlle! board. Contains assembled and testec \(5^{\prime}\) long signal cable with 34 pin edge connectors. Also includes cables and connector for D.C. power supply. WCA-3431K

8" DISK CABLE KIT: To connect two 8 disk drives to edge-type controller (e.g., Versafloppy, Double-D) Contains assembled and tested signal cable with connectors plus cable and connectors for both A.C. and D.C power.
WCA-5031K
\(\$ 38.45\)
8" DISK CABLE KIT: Same as WCA5031 K except controller end of signal cable uses "Header" type connector, e.g., for Tarbell Controller WCA-5032K \(\$ 38.95\)

SIGNAL CABLE ONLY: For one 5 1/4 drive to edge type controller connector (e.g., TRS-80 to Vista Disk Drive). WCA-3421A. \(\$ 24.95\) Same as Abov drives. WCA-3431A
\(\nu\) हैto Plugboards 8800 V Universal/Microcomputer/Processor Plugboard Use With S-100 Bus. Complete With Heat Sink
\& Hardware.
\(5.3^{\prime \prime} \times 10^{\prime \prime} \times 1 / 16\)
\(\$ 19.95\)
8801-1
Same as 880 V Excep Plain, Less Power Buses \& Heat Sink.
\(\$ 15.95\)
P Pattern Plugboards For I.C.'s. Epoxy Glass 1/18 44 Pin. Connector Space .156 3662 6.5" \(\times 4.5^{\prime \prime} \ldots \$ 7.65\) \(3662-29.6^{\prime \prime} \times 4.5^{\prime \prime} \$ 11.45\)

Hi-Density Dual-In-Line Plugboard For Wire Wrap With Power \& Grd. Bus Epoxy Glass \(1 / 16\) " 44 Pin Con Spaced .156 \(36829.6^{\prime \prime} \times 4.5^{\prime \prime}\). \(\$ 10.97\)
\(3682-26.5^{\prime \prime} \times 4.5\). . ... 59.81

Gen Purpose D.I.P. Boards With Bus Pattern For Solder Or Wire Wrap. Epoxy Glass 1/16" 44 Pin Con. Space . 156
3677 9.6" \(\times 4.5^{\prime \prime} \ldots \$ 10.90\) \(3677-26^{\prime \prime} \times 4.5 \ldots \$ 9.74\)

3690-12
Card Extender
Card Extender Has 100 Contacts 50 Per Side ON 125 centers. Attached Connector is Compatible With S-100 Bus Systems \(\$ 25.83\) 3690
6.5" 22/4 Pin. 158 Centers Extenders.
\(\$ 13.17\)

\section*{INTEGRAL DATA SYSTEMS MODEL 440}

\section*{\$995.00}
- Up to 198 CPS
- 1.75" to 9.5" Adjustable Tractor Feed
- Parallel and Serial Interface
- 96 Character ASCII Set
- 132 columns- 6 or 8 lines/inch - Eight software selectable Charac

FOR THE GRAPHIC OPTION WITH 2K. ADD \(\$ 199.00\)


\section*{DISK DRIVES}

SPECIAL

51/4" Diskettes \(\$ 29.95 /\) Box of \(T \in N\) SPECIFY SOFT, 10 , or 16 SECTOR

8" SINGLE SIDE, SINGIE DENSITY \(\$ 34.95 /\) Box of \(T \in N\)

MPI B51 5 1/4 "............. \(\$ 295.00\) Single or double density, up to 40 tracks, track to track access time only 5 ms .
MPI B52 5 1/4"
\(\$ 450.00\) Double head version of MPI B51 Shugart SA400 5 1/4" ..... \$325.00 Single Density, 35 Track Siemens FDD100-8 \(8^{\prime \prime}\)
\(\$ 495.00\) Shugart 801R replacement, Single or double density, runs cooler and quieter.
Siemens FDD200-8 \(8^{\prime \prime}\)
\(\$ 575.00\) Double head version of FDD100-8 capable of double density, double sided storage.
Shugart 801R 8 Hard or soft sectored, 400 K BYTE drive.

NOVATIO

CAT
ACOUSTIC MODEM
Midsummer Special Features Include: 300 Baud
Answer/Originate, Bell 103, Comes \$189.00
Assembled and Tested

\section*{\(=\) TAB TDIE-j6 Computer Products}


4901 W. ROSECRANS AVE., HAWTHORNE, CALIFORNIA, 90250 ORDER TOLL FREE
800-421-5809 CONTINENTAL U.S.

\section*{Matians}

800-262-1710 INSIDE CALIFORNIA

\section*{WRITE FOR OUR FREE CATALOG}

Cash. checks. money orders. and credit cards accepteu Minimum order: \(\$ 10.00\). Calitornia residents add 6 sales tax Minimum shipping and handling charge: \(\$ 250\). Discounts available at OEM quantities
PRICES GOOD IN UNITED STATES AND CANADA
- Two Drives Siemens/ GSI 8 " Floppy
- Power Supply for Above - Jade Double Density Board (KIT)
- CP/M Operating System with Basic E
- Package of 10 Blank \(8^{\prime}\)

Diskettes (Double Density)
- Includes Interface Cables
Price if Purchased Sedaratelv S1544.95
Jade Special Package Deal
\(\$ 1225.00\)

\section*{FLOPPY DISK INTERFACE} JADE FLOPPY DISK (Tarbell board)
Kit
\(\$ 19500\)
Assembled \& Tested
\(\$ 25000\)
S.D. Computer Products
VERSA-FLOPPY
KIt
Assembled \& Tested

UIsta U80 Minl Disk
SYSTEM FOR TRS-80

includes disk drive power supply. regulator board and compact case. The V- 80 offers \(23^{\circ}\) o more storage capacity Simply take it uut of the box, plug in the cable. and it's ready to run. Requires 16 K Level II. expansion interface
Interface Cable . . \$24.95

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & \multirow[t]{4}{*}{} & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline Custom Cables \(\&\) Jumpers & & \\
\hline \({ }^{2}\) & & \\
\hline &  & \\
\hline & \multirow[t]{2}{*}{} & \\
\hline & & \\
\hline &  & \\
\hline \multirow[t]{2}{*}{\[
{ }^{25} \mathrm{Pin}
\]} & & \\
\hline & \multirow[t]{2}{*}{} & \\
\hline DB25P (as pictured) PLUG (Meets RS232) & & COMPUTER CASSETTES \\
\hline  &  & \\
\hline \multirow[t]{2}{*}{} & 드드 CONTINENTAL SPECIALTIES & \\
\hline & Proto Board 203 Proto Board 203A & \[
\}=C A S-6 \$ 14.95
\] \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{3}{*}{} & \\
\hline & & \\
\hline & & \\
\hline & \multirow[t]{2}{*}{} & \\
\hline \multirow[t]{2}{*}{Jumbo 6-Digit Clock Kit *Four .630 "ht. and two .300} & & \\
\hline & \multirow[t]{2}{*}{62-Key ASCII Encoder Keyboard Kit} & \\
\hline \multirow[t]{3}{*}{} & & \\
\hline &  & \\
\hline & \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{\[
1
\]} \\
\hline \multirow[t]{2}{*}{} & & \\
\hline & & \({ }^{\text {cas }}\) \\
\hline \multirow[t]{2}{*}{} & & 込 \\
\hline &  & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{E-3} &  & \\
\hline & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{} \\
\hline & & \\
\hline & & \multirow[t]{3}{*}{Miniature Joystick} \\
\hline &  & \\
\hline & \multirow[b]{4}{*}{} & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
- 2 each 100 K pots (Linear Taper) \\
- Printed Circuit Board Mount
\end{tabular}} \\
\hline & & \\
\hline Jego & & \\
\hline
\end{tabular}

\title{
GODBOUT SLASHES STATIC MEMORY PRICES GGAID:
}
 S-100 \(32 k\) K \(529,24 K \$ 398,16 K \$ 2691\)
Econoram * unkits are now at their lowest prices ever.
What's an "unkit"? It's a standard Econoram board that has all sockets and bypass caps pre-soldered in place. To complete assembly, the user simply solders in a few other parts, and inserts all ICs into their sockets. The result: A one-evening project that saves money while offering true CompuPro/Econoram quality for those on a budget. Static technology used throughout; all boards except Econoram VI run with 4 MHz systems. Same 1 year limited warranty, same great specs as our regular boards.
Speaking of regular boards, we offer assembled/tested models and boards qualified under our high-reliability Certified System Component (CSC) program ( 200 hour burn-in, immediate replacement in event of failure within 1 year
 of invoice date). Refer to chart below for pricing
\begin{tabular}{lclllll} 
Name & Storage & Buss & Configuration & Unkit & Assm & CSC \\
Econoram IIA & \(8 \mathrm{~K} \times 8\) & S-100 & \(2-4 \mathrm{~K}\) blocks & \(\mathbf{\$ 1 4 9}\) & \(\mathbf{\$ 1 7 9}\) & \(\mathbf{\$ 2 3 9}\) \\
Econoram IV & \(16 \mathrm{~K} \times 8\) & S-100 & \(1-16 \mathrm{~K}\) & \(\mathbf{\$ 2 6 9}\) & \(\mathbf{\$ 3 2 9}\) & \(\mathbf{\$ 4 2 9}\) \\
Econoram VI & \(12 \mathrm{~K} \times 8\) & H8 & \(1-8 \mathrm{~K}, 1-4 \mathrm{~K}\) & \(\mathbf{\$ 2 0 0}\) & \(\mathbf{\$ 2 7 0}\) & \(\mathrm{n} / \mathrm{a}\) \\
Econoram VIIA-16 & \(16 \mathrm{~K} \times 8\) & S-100 & \(2-4 \mathrm{~K}, 1-8 \mathrm{~K}\) & \(\mathbf{\$ 2 7 9}\) & \(\mathbf{\$ 3 3 9}\) & \(\mathbf{\$ 4 3 9}\) \\
Econoram VIIA-24 & \(24 \mathrm{~K} \times 8\) & S-100 & \(2-4 \mathrm{~K}, 2-8 \mathrm{~K}\) & \(\mathbf{\$ 3 9 8}\) & \(\mathbf{\$ 4 8 5}\) & \(\mathbf{\$ 6 0 5}\) \\
Econoram IX-16 & \(16 \mathrm{~K} \times 8\) & Dig Grp & \(2-4 \mathrm{~K}, 1-8 \mathrm{~K}\) & \(\mathbf{\$ 3 1 9}\) & \(\mathbf{\$ 3 7 9}\) & \(\mathrm{n} / \mathrm{a}\) \\
Econoram IX-32 & \(32 \mathrm{~K} \times 8\) & Dig Grp & \(2-4 \mathrm{~K}, 1-8 \mathrm{~K}, 1-16 \mathrm{~K}\) & \(\mathbf{\$ 5 5 9}\) & \(\mathbf{\$ 6 3 9}\) & \(\mathrm{n} / \mathrm{a}\) \\
Econoram X & \(32 \mathrm{~K} \times 8\) & S-100 & \(2-8 \mathrm{~K}, 1-16 \mathrm{~K}\) & \(\mathbf{\$ 5 2 9}\) & \(\mathbf{\$ 6 4 9}\) & \(\mathbf{\$ 7 8 9}\) \\
Econoram XI & \(32 \mathrm{~K} \times 8\) & SBC & \(2-8 \mathrm{~K}, 1-16 \mathrm{~K}\) & \(\mathrm{n} / \mathrm{a}\) & \(\mathrm{n} / \mathrm{a}\) & \(\mathbf{\$ 1 0 5 0}\)
\end{tabular}

- Econoram is a trademark of Bill Godbout Electronics
- Econoram XII-16 and -24 have 2 independent banks addressable on 8 K boundaries; Econoram XIII has 2 independent banks addressable on 16K boundaries.
-Did someone say extended addressing? 16 bit CPUs? All we'll say is that Econoram XIV is coming soon -


\section*{OTHER COMPUTER PRODUCTS:}

\section*{2708 EROM BOARD UNKIT \(\$ 85\)}

4 independently addressable 4 K blocks, with selective disable for each block. Built to CompuPro/Econoram standards (dipswitch addressing, top quality board, sockets weve-soldered in place), and includes dipswitch selectable jump start built right into the board. Includes all support chips and manual, but does not include EROMs

\section*{ACTIVE TERMINATOR KIT \(\mathbf{\$ 3 4 . 5 0}\)}

As written up by Craig Anderton in the April ' 79 issue of Kilobaud Microcomputing. Our much imitated design plugs into any S-100 motherboard to reduce puting. Our much imitated design plugs into any S-100 m
ringing, crosstalk, noise, and other buss-related problems.

\section*{"INTERFACER" S-100 I/O BOARD}
\(\$ 189\) unkit, \(\$ 249\) assembled and tested. Dual serial port with 2 full duplex parallel ports for RS-232 handshake; EIA232C line drivers and receivers (1488 1489 ) along with current loop ( 20 mA ) and TTL signals on both ports. On board crystal controlled timebase with independently selectable Baud rate generators for each part (up to 19.2 KBaud). This board has hardware LSI UARTs that don't tie up the computer's CPU, operates with 2 to 5 MHz systems, includes software programmable UART parameters/ interrupt enables/handshaking lines, offers provision for custom frequency compensation on both receive and transmit sides to ac commodate varying speed/noise situations or unusual cable lengths... and even all this isn't the full story on what this no-excuses board can do for you. We think this product is a real winner; check one out in person, you'll see what we mean

TERMS: Cal res add tax. Allow \(5 \%\) shipTERMS: Cal res add tax. Allow \(5 \%\) ship-
ping. excess refunded. VISA ping, excess refunded. VISA \({ }^{\oplus} /\) Master-
charge \({ }^{\circ}\) call our 24 hour order desk at charge call our 24 hour order desk at dress for UPS. Prices good with street ad month of magazine


Box 2355, Oakland Airport, CA 94614
from


FREE FLYER: We'll be glad to tell you more than the space of this ad permits. Just send your name and address, we'l enclose 414 in delivery.

\section*{}

1021 Howard Street - San Carlos, California 94070 - (415) 592-8097

\section*{ANOTHER QUALITY Jm-pak KIT ANNOUNCED!}

SAN CARLOS, California (JE) - Jim-Pak Components today announced the addition of another innovative kit to
their growing line of quality electronic kits for the home enthusiast. The JE610 62-key

ASCII Encoder Computer Keyboard is now available through JIM-PAK distributors.


\section*{62-Key ASCII Encoder Keyboard Kit}

THE JE610 62-KEY ASCII ENCODER KEYBOARD KIT CAN BE INTERFACED INTO MOST ANY COMPUTER SYSTEM. THE JE610 KIT COMES COMPLETE WITH AN INDUSTRIAL GRADE KEYBOARD SWITCH ASSEMBLY ( 62 KEYS), IC'S, SOCKETS, CONNECTOR, ELECTRONIC COMPONENTS AND A DOUBLE SIDED PRINTED WIRING BOARD. THE KEYBOARD ASSEMBLY REQUIRES +5 V @ 150mA AND -12 V @ 10 mA FOR OPERATION.

FEATURES:
- 60 KEYS GENERATE THE FULL 128 CHARACTERS, UPPER AND LOWER CASE ASCII SET
- FULLY BUFFERED
- 2 USER DEFINE KEYS PROVIDED FOR CUSTOM APPLICATIONS
- CAPS LOCK FOR UPPER CASE ONLY ALPHA CHARACTERS
- UTILIZES A 2376 (40 PIN) ENCODER READ ONLY MEMORY CHIP
- OUTPUTS DIRECTLY COMPATIBLE WITH TTL/DTL OR MOS LOGIC ARRAYS
- EASY INTERFACING WITH A 16-PIN DIP OR 18-PIN EDGE CONNECTOR

JE610

The EXPANDORAM is available in versions from 16 K up to 64 K , so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invisable on-board refresh, and IT WORKS!
- Interfaces with Altair, IMSAI, SOL-8, Cromenco, SBC-100, and others. - Bank Selectable
- Phantom
- Power \(8 \mathrm{VDC}, \pm 16 \mathrm{VDC}, 5\) Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is doubled solder masked and
has silk-screen parts layout.

\section*{SD EXPANDORAM}

The Ultimate S-100 Memary

- Extensive documentation clear ly written
- Complete Kit includes al Sockets for 64K
- Memory access time: 375ns Cycle time: 500ns
No wait states required
- 16K boundries and Protection via Dip Switches
- Designed to work with Z-80 8080, 8085 CPU's.
EXPANDO 64 KIT (4116)
16K
32 K
\$249
3K
64K
SAVE \({ }^{\text {s }} 100^{00}\) DM2700S DISK \& CABINET with POWER SUPPLY
DM2700S includes Siemans or Shugart Disk Drive with the following features:
- Single or Double Density
- Hard or Soft Sector Cabinet includes:
- Write Protect - 110 V to 125 V 60 Hz power supply
- Hard Sector Detection - Data Cable
- \(500 \mathrm{~KB} / \mathrm{S}\) Transfer - Fan
- 800 KB unformated - Accepts per SCI, Shugart, Siemans
- Bit density 6536 BP1 8" Drives
- Sugart 800 Series Compatable DM2700

DM2700S Disk Drive \& Cabinet \(\$ 65000\)
REG. \(\$ 750\) SALE PRICED 324900
abinet, less Drive REG. \(\$ 750\) SALE PRIC


\section*{CONTINENTAL SPECIALIES CORPORATION \\ Logic Probes and Digital Pulsers \\ \(\$ 650.00\)}
\(\$ 495.00\)
Siemens FDD 200-88 double-sided double density



VDB-8034 Video Display Board With On-Board \(\mathbf{Z 8 0}\) Microprocessor

\section*{- Charructern displayed br Hilieh Nex \\ - Keyboceard Pimer and Inturfiace \\  \\ Level synchromization
}

\section*{"}

\section*{PRIORITY ONE ELECTRONICS。}

Terms: Visa, MC, BAC, Check, Money Order, C.O.D. U.S. Funds Only. CA residents add \(6 \%\) sales tax Minimum order \(\$ 10.00\). Prepaid U.S. orders less than \(\$ 75.00\) include \(5 \%\) shipping and handling minimum \(\mathbf{\$ 2 . 5 0}\). Excess refunded. Just in case . . . please include your phone no.

Prices subject to change without notice.
- P21

We will do our best to maintain prices thru Sept. 1979.

\section*{SD COMPUTER BOARDS}

\section*{\$239 KIT}

SBC-100 Single Board Computer with On-board RAM, PROM, CTC
 \(8 K\) Byres of Avallable PROM - Serial InpuiUOutput Port with bxith
Synchronows end Assmchronows Synchronon

\begin{tabular}{|c|c|}
\hline - Four Channe (Z80-CTC) & \begin{tabular}{l}
- ZZHOCentral Proceswing Untt \\
- 1024 Bytes of Random Accesso Memo
\end{tabular} \\
\hline ware Prowrammuble Haud theren & - 8K Byres of Avallable PROM \\
\hline & tal InpuiUOutput Port \\
\hline - \(\mathrm{S}-100\) Bus Compuuble & nous \\
\hline - No Front Panel Requitred fir On & Operatoon \\
\hline onal Vectured titem & - Parallel Input and Crutp \\
\hline
\end{tabular}

\section*{38
19
0}

MODEL L
Economy version of Model LP.1. Safer than a voltmeter. More accurate than a scope. Input Impedence: (300,000 ohms . Minlmum Detecteble Pulee: 300
ns. Meximum Input Signal (Frequency): 1.5 MH . Pulse Detector (LED): High ns. Maximum Input Signal (Frequency): 1.5 MHz . Pulse Detector (LED): High
speed train or single event. Pulse Momory: None.
 MODEL LP. 3
MODEL LP.3
High speed logic probe. Captures pulses as short as 10 ns . Input Im High speed logic probe. Captures pulses as short as 10 ns . Input Im
pedence: 5000000 ohms Minimum Dotectable Pulse: 10 ns. Maximum Input
Signt Pignal (Frequency): 50 MHz. Pulse Dotector (LED): High speed Irain or
Signal
single event. Pulse Momory: Pulse or level transition delected and stored

\(\$ 249\)

\section*{Z80 Starter Kit}

A Complete Microcomputer on a Board




 INts) 1 K )
\(\qquad\)



DIGitaL PULSER positive and negative power, then touch DP. ''s probe to a circuit node; the pushbutton and trigger an opposite polarity pulse into the circuit. Fast troubleshooting inclucues injecting signals al key points in TIL, DTL, CMOS
or other poopular circuits. Test with single pulse or 100 pulses or other popular circuits. Test with single pulse or 100 pulses per second linuous modes. LED indicator monitors operating modes by flashing once
for single pulse or continuously for a pulse train. Completely aulomatic.
 put: Tristate. Polarity: Pulse.sensing auto-polarity. Sync and Source: 100
mA. Pulse Traln: 100 pps. LED Indicator: Flashes for single pulse; stays lit

CSC Model DP. 1 Digital Pulser - Net Each
\(\$ \$ 71.20\)


1,16 Vector board .042 dia holes on 0.1 spacing for IC's

\section*{Phenolic} \(\begin{array}{lrrr}\text { PART NO. } & \text { SIZE } & 1-9 & 10-19 \\ \text { P4P44XXXP } & 4.5 \times 6.5^{\prime \prime} & \$ 1.56 & \$ 1.40\end{array}\) \(\begin{array}{llll}\text { 64P44XXXP } & 4.5 \times 6.5^{\prime \prime} & \$ 1.56 & \$ 1.40 \\ 169 P 44 \text { XXXP } & 4.5 \times 17^{\prime \prime} & \$ 3.69 & \$ 3.32\end{array}\)

Epoxy Glass
\begin{tabular}{llll} 
64P44 & \(4.5 \times 6.5^{\prime \prime}\) & \(\$ 1.79\) & \(\$ 1.61\) \\
84P44 & \(4.5 \times 8.5^{\prime \prime}\) & \(\$ 2.21\) & \(\$ 1.99\) \\
169P44 & \(4.5 \times 17^{\prime \prime}\) & \(\$ 4.52\) & \(\$ 4.07\) \\
\(169 P 84\) & \(8.5 \times 17^{\prime \prime}\) & \(\$ 8.03\) & \(\$ 7.23\)
\end{tabular} Carrying Case VP. \(10 \times 10\) DCV Probe Adapter VP. 4040 KV DC Probe runs 200 hrs on 1 battery. 10 Meg U.S.A., test leads included RC. 3115 V vailable Accessories CC. 3 Deluxe Padded


\section*{5p) \(\frac{1}{5}\) S-100 BUS EDGE CONNECTORS \(58 / 2\)}
|||||||||||||||||||||||||||||||||||||||||||||||||'



3 \(150-5\)
3250 s325

S100SE 5
SOLDEA
1.4
55.00
Other Popular Edge Connectors


See our July Ad for many other connectors.

3 LEVEL GOLD WIRE WRAP SOCKETS

\(\underset{\substack{10.22 \\ 3.50}}{\substack{102}}\)
\(\$ 19^{1.9} 95\)
\(\$ 17^{5.96}\)
\(\$ 15.96\)
\begin{tabular}{lll}
1.4 & 5.9 & 10.24 \\
\(\mathbf{\$ 1 5 . 2 2}\) & \(\$ 13.79\) & \(\$ 12.18\) \\
\hline
\end{tabular}

\section*{TRS -80/APPLE}

MEMORY EXPANSION KITS 4116's RAMS
(16Kx1 200ns)
Add \(\$ 3.00\) for programming Jumpers
for TRS-80 Keyboard

\$10.90
677-2 \(\$ 9.74\)
Cen. Purpose D.I.P. Boards with Bus Pattern for Solder or Wire Wrap.


3662 6.5'
\(\$ 7.65^{4}\)
\(662-2\) 9.6" \(\times 4.5\)
\(\$ 11.45\)


IC SOCKET SALE
14 pin Low Proflle 10/\$2.10 100/\$14.00 16 pin Low Profile 10/\$2.20 100/\$16.00 24 pin Low Profile 3/\$1.00 40/\$10.00 40 pin Solder Tail \(3 / \$ 1.0040 / \$ 10.00\) 24 pin Dip Plug with 3/\$1.0040/\$10.00


PANAVISE TILTS, TURNS, AND
IT HOLDS YOUR WORK IT HOLDS YOUR WORK
EXACTLY WHERE YOU WANTIT.

\section*{Vextor}

WRAP POST for .042 dia. holes (all boards on this page)
T4NC pkg. \(100 \ldots \$ 2.34\) T44/M pkg.

R
ORDER TOLL FREE 1-800-423-5633
ORDER TOLL FREE 1-800-423-5633


CENTRONICS PRINTERS
Refurbished. excellent working condition 10 day return privilege of course. Spectications Centrinise \begin{tabular}{c} 
Lisi \\
PCE \\
Price \\
\hline
\end{tabular}
CENTAONICS 700 \(60 \cos 132645 \times 7\) chars tration
1eed \$1520 \$ 660
Centhonics 701 Same as 700 bicrirectional \(105{ }^{695}\)
CENTRONISS (KSA) 761.1

\(1850-695\) Sava
Same as 761.1 receive only 550

Call for 90-day-warranty prices

\section*{KIM-1}

The original fully. COMPUTER
Assembled \$169.95
with power supply
EXPAND YOUR KIM

\section*{KIMSI}

KIM TO S-100 BOARD
\(\begin{array}{lr}\text { Assembled } & \$ 169 \\ \text { Connector set } & \$ 15\end{array}\)
MICRO TECH.
POWER SUPPLY
Assembled
Assembled
KIM ENCLOSURES
Give your KIM a
professional look \(\mathbf{\$ 2 3 . 5 0}\)
1st Book of KIM FREE
with each KIM ordered
many valuable programs
many valuable programs.


New 300 baud
Originate/Answer Acoustic Coupler. Looks good, works great and sale priced at \$189

\section*{SALEI}

LOW-COST PRINTER FOR PET

INTRODUCTORY
PRICE
\$395

apple II
p/us

\section*{\$200 FREE ACCESSORIES}

The new Apple II with Applesoft BASIC built-in' Eliminew Aue need for a \(\$ 200\) Firmware Card and includes with the FREE ROM for easy operation This combined to \(\$ 400\) on a 48 K Apple II system
16 K Apple II Plus - \(\$ 1195\) (take \(\$ 100\) in free accessories) 32K Apple II Plus - \(\$ 1345\) (take \(\$ 150\) in free accessories 48 K Apple II Plus - \(\$ 1495\) (take \(\$ 200\) in free accessories)
Apple II Accessories
Centronics Printer Interface
Disk and Controller
Second Disk Drive
Parallel Printer Card
Communicatıons Card
Hi-Speed Serial Card
Firmware Card
Hobby Proto Card
Microverter RF Mod.
Sanyo M2544 Recorder
\(\$ 225\)
\(\$ 595\)

\section*{FREE A\$169 SANYO VALUE MONITOR}
-3 SORCERER

Z-80 Processor • Full-size keyboard • User definable characters Up to 32 K on-board RAM - Interchangeable ROM PACs • \(30 \times 64\) display • Resident 4 k monitor ROM Dual Cassette I/O. Serial and Paraltel I/O. Complete operator's manual
Simply add a monitor and tape decks to complete the system. Can be used as a terminal. Microsoft BASIC
ROM PAC is standard NEWI Exidy Word Processing ROM PAC is standard. NEW! Exidy Word Processing ROM PAC now available which handles tabs, search/ replace. etc. many different printers and can be used with cassette or disk The most flexible W/P system we ve ever seen.
\begin{tabular}{l} 
Sorcerer 8 K \\
Sorcerer 16 K \\
Sor \\
\hline
\end{tabular} Sorcerer 16K \$1150 Word Processing ROM PAC

\section*{SPECIAL! CRT TERMINAL PRINTER PACKAGE}

Hazeltine 1520 and a Centronics 761-5 together for only \(\$ 2.295\). The perfect work station for use with a buffered communications system. Terminal operations and print-

\section*{APPLE II PRINTER PACKAGE \$995}

For this low. Iow price, we choose a Centronics Impact your Apple II. You save hundreds of dollars Limited quantities available.

\section*{TI Programmer}

Reg \(\$ 5995\) Only \$54.95

A programmer s best defense against octal and hexa-
decimal Calculates in three number bases and performs decimal Calculates
logical operations.

SELLING COMPUTERS
BY MAIL SINCE 1971 1250 North Main Street, DepartmentKB99 F.0. Box 8610 Ann Arbor, Michigan 48107
(313) 994-3200

IMPORTANT ORDERING INFORMATION
All orders must include 4\% shipping and handling. Michigan residents must also add 4\% for state sales tax. All foreign orders (except Canada) need an additional \(10 \%\) for shipping and handling. We cannot process your order without these.


Phones open from 9:00 a.m. to 7:00 p.m. EST Monday-Friday, 10:00 a.m. to 5:00 p.m. Saturdays • P.O.'s accepted from D \& B rated companies - ship ment contingent upon recelpt of signed purchase order o open accounts invited - call for credit application . Most items in stock for immediate shipment - call for delivery quotation - Sorry, no C.O.D.'s - All prices subject to change without notice o In the Ann Arbor area? Retail store open 11:00 a.m. to 7:00 p.m. Tuesday-Friday, 10:00 a.m.to 5:00 p.m. Saturdays (Closed Sunday and Monday)

\section*{Visit our new retail location!}

A Portable, Dual Trace Oscilloscope with Big Performance and a Low, Low Price
NEW MS-230 Dual Trace Miniscope with 30 MHz Bandwidth!

PORTABLE BATTERY OPERATED • MADE IN THE U.S.A.! With Rechargeable Batteries \& Charger Unit

FEATURES
- Dual Trace-2-channel; separate, chopped or alternate modes.
- 30-megahertz bandwidth. - External and internal trigger
- Time Base -0.05 microseconds to 0.2 Sec./div- 21 settings. Battery of line operation - Line synchronization mode. - Power consumption less than 50W
- Vertical Gain - 0.01 to 50 volts/div- 12 settings. Size: \(2.9^{\prime \prime} \mathrm{H} \times 6.4^{\prime \prime} \mathrm{W} \times 8.5^{\prime \prime} \mathrm{D}\)
- Weighs only 3.5 lbs with batteries.
- TEST MOST DIGITAL LOGIC CIRCUITS INCLUDING MICROPROCESSORS

From the originators of the Digital Voltmeter, the people who have broken sales and performance records for Osciloscopes, Non-Linear Systems, comes the MS-230 miniscope.
Non Linear Systems took their engineering and modular construction skills and made a dream a reality, a Dual-Trace 30 MHz miniscope, small enough to fit in most briefcases with room to spare at an affordable price.

\section*{VERTICAL}

Mode: CH1, CH2, CH1 \& CH2 (Chopped) \& CH2 (Alt.) (The following specifications apply to each channel.)
Bandwidth: DC to \(30 \mathrm{MHz}, \pm 3 \mathrm{db}\) @ 3 division deflection. Typical 4 division deflection is obtainable up to 20 MHz .
Coupling: AC, DC or ground, switch selectable. Low frequency 3 db point on AC is 3 Hz .
Rise Time: Approximately 10 nSec @ 3 division deflection.
Vertical input: \(10 \mathrm{mV} / \mathrm{div}\) to \(50 \mathrm{~V} / \mathrm{div}\) in 12 calibrated ranges. Accuracy is \(3 \%\) of full scale with vernier in full clockwise posi ton. Vernier provides continuousiy variable deflection factors betwee fixed ranges, uncalibrated.
Input Impedance: 1 megohm in parallel with 50 pF Maximum Input Voltage: 250 V (DC and Peak AC).
HORIZONTAL
Mode: Internal Time Base or External Horizontal, switch selectable. In the XY mode, vertical input is through CH1 and horizontal input through CH2
Time Base: 0.5 u Sec/div to \(0.2 \mathrm{Sec} / \mathrm{div}\) in 21 calibrated ranges. Accuracy is 3\% of ull scale wition Vernier provides lockinuously variable settings bet continuously variable settings be ween fixed ranges, uncalibrated
Ampiifier
Bandwidth: DC to \(1 \mathrm{MHz}( \pm 3 \mathrm{db})\)
Coupling: AC, DC or ground, switch selectable Deflection Factor: 10 mVIdiv to 50 V Idiv in 12 . brated ranges. The ranges can be calibrated with the gain control.
input impedance: 1 megohm in parallel with 50 pF . Maximum input Voltage: 250 V (DC and Peak AC).
TRIGGER
Modes:
Automatic: trigger is disabled, time base free runs.
Internal: In the dual trace modes, the internal rigger source is CH1. External and Line line not functional when MS-230 operates on batteries.) input impedance is 1 megohm on External Trigger.
External: Controls function es ine: - Treer is dervea

Slope: + or -, switch selectable.
Coupling: AC
Sensitivity: Less than 1 div for internal trigger and less than 1 volt for external trigger.
Levei: Trigger level control permits continuous ad justment of trigger point in all modes except Auto.
CALIBRATOR: A square-wave signal of 1 volt p-p is provided. Voltage cy is approximately 1 KHz
DISPLAY
Graticule: \(4 \times 5\) div, each division is 0.25 inch, Viewing area \(1.1^{\prime \prime} \mathrm{H} \times 1.35^{\prime \prime} \mathrm{W}\).

CRT: Bluish-white phosphor, medium persistence CRT uses low power filament for low battery drain.

\section*{POWER SOURCES}

Internai: Three sealed, rechargeable lead-acid cells Operating time using fully charged cells is approximately 45 minutes. Charging cir MS-230 is connected functions wher line through plug-in transformer (supplied with each in strument). Battery charge time with instru strument). Battery charge time ment non-operating is 16 hours
Externai: Operates continuously from 115 vac source \(50 \cdot 400 \mathrm{~Hz}\) when connected via Power consumption from vC in available) from AC line is less than 50 watts.

\section*{ENVIRONMENT}

Operating Temperature: \(0^{\circ}\) to \(40^{\circ} \mathrm{C}\)
Shock and Vibration: Will withstand normal shock and vibration encountered in commercial shipping and handling.
PHYSICAL MEASUREMENTS
Size: \(2.9^{\prime \prime} \mathrm{H} \times 6.4^{\prime \prime} \mathrm{W} \times 8.5^{\prime \prime} \mathrm{D}\). \((73.7 \mathrm{~mm} \times 162.6 \mathrm{~mm}\) x 215.9 mm )
Weight: 3.5 lbs . \((1.59 \mathrm{~kg})\) with batteries.
FURNISHED ACCESSORIES:
Tilt stand. battery charger. 2 input cables, and 3
WARRANTY: One year parts and labor. Made in the USA!
MS-230 with Rechargeabie Batteries and Charger s55900

\section*{PROBES}

Deluxe 10 to 1 probe with 10 megohm input. 100 MHz probe with 4 interchangeable tips: Spring-loaded retractable cover tip, Insulating tip, BNC tip, IC tip, also included cap adjustment tool and zippered vinyl case.
\(\$ 27.00\)
41-141
DELUXE COMBINATION PROBE
Same as above except the probe has a switch to select; 10 to 1,1 to 1 or a ground reference position. 41.37R Red probe body

41-37G Grey probe body
\(\$ 38.50\)
LEATHER CARRYING CASE
The leather case has 2 separate compartments One to hold the scope. the other to hold the charger, probe. shoulder strap. erc
on the beth, or over the neck The singps used on the case are "one way". thus accidental striking of
the case against an object will not undo the snaps or let lit be pulled ofl your the case against an oblect will not undo the snaps or letit be pulled oft your
belt 41-180.
\(\$ 45.00\)
( 7.00 ㄷ

\section*{PRIORITY ONE ELECTRONICS.}

16723K Roscoe Bivd. Sepulveda, CA 91343
Terms: Visa, MC, BAC, Check, Money Order, C.O.D. U.S. Funds Only. CA residents add \(6 \%\) sales tax.
Minimum order \(\$ 10.00\). Prepaid U.S. orders less than \(\$ 75.00\) include \(5 \%\) shipping and handling Minimum order \(\$ 10.00\). Prepaid U.S. orders less than \(\$ 75.00\) include \(5 \%\) shipping and handling,
minimum \(\$ 2.50\). Excess refunded minimum \(\$ 2.50\). Excess refunded. Just in case ... please include your phone no

Prices subject to change without notice.

\section*{WALLEN \\ ELECTRONICS CO. INC. Tel: (617) 588-6440-6441 \\ 108 SAWTELL AVE., BROCKTON, MA. 02402 \\  \\ Ideal for micro and mini computers. These units have been removed from equip-}
 ment, checked out and guaranteed. 5 volts @ \(8 \mathrm{amps}+12\) volts. \(2 \mathrm{amps}+\) 6 volts @ 75 MA. Power supply has a 3 -wire line cord and fused. Dimensions: \(101 / 2^{\prime \prime} \times 51 / 2^{\prime \prime} \times 4 / 2^{\prime \prime}\). Shipping weight: 16 lbs .

2 FOR 70.00

\section*{WIRE WRAP BOARDS}

These boards are pre-wired and removed from equipment. Easy to unwrap for setting up your own board, contains mostly 14-pin IC sockets with individual pin connections. Each board has VCC and ground planes.


Reduced prices

Smaller board measures \(61 / 2^{\prime \prime} x 6^{\prime \prime \prime}\) and has 40 to 50 sockets. Price \(\$ 17.00\) ea. \(2 / \$ 20,00 \$ 7.50\) ea. \(2 / \$ 14.00\) Larger board measures \(1312^{\prime \prime} \times 6^{\prime \prime \prime}\) and has 75 to 100 sockets. Prige \(\$ 77.50\) ea. \(2 / \$ 33.00 \$ 12.50\) ea. \(2 / \$ 23.00\)

\section*{DIA BLO SYSTEM DISC DRIVE}

SERIES 40 MODEL 43100 tracks per inch, total capacity of 50 megabits, w/Model 429 power supply. sector counter, 24 sectors, 1 fixed disc, 1 removable disc, average access time 38 ms , PPM: 2400, dimensions: 10 5/16" high, fits in standard rack, equipped with full extension slides, excellent used condition. Shipped freight collect.


\section*{FM SIGNAL GENERATOR}

MEASUREMENTS MODEL 560 FM
Frequency \(\mathbf{2 5 ~ m h z}\) to \(\mathbf{8 0} \mathbf{~ m h z}\) and \(\mathbf{1 3 0 - 1 7 5 ~ m h z . ~ D i - ~}\) mensions: \(10^{\prime \prime} \times 10^{\prime \prime} \times 16^{\prime \prime}\), weight: 16 Ibs . Shipped freight collect. Used. Checked out and operating.

\section*{TRANSFORMERS ISOLATION STEP.DOWN TYPE}

Primary: 230/115V, 50/60 CPS, Secondary: VA output 250 V .

\begin{tabular}{llll}
7444 & \(. . . . . . . . . . . . . . . . ~ . ~\) & 45 & 74H72J
\end{tabular} ............ . 45


By FORD INDUSTRIES, INC.
These units have complete installation and operating instructions w/6-foot cord. Colors: beige, white, green, Used, operating condition.
\(\$ 89\)
TRENDLINE


Mfd. by I.T.T.
Rotary dial. Colors: white, black, red, green. Packaged, has 6 -foot cord and installation instructions. Used, operating condition.
34.50

HEWLETT-PACKARD Model 175A

\section*{OSCILLOSCOPES}

These scopes have a 50 Mhz bandwidth and have 2 plug-ins, a 1781B Delay generator and a model 1755A Dual trace vertical amplifier. Dimensions: \(13^{\prime \prime} \times 17^{\prime \prime} \times 25^{\prime \prime}\), weight 71 lbs. shipped
 freight collect. \(5^{\prime \prime}\) scope. Used. Checked out and operating.
\$339

\section*{ROTRON WHISPER FANS}

Unused, Model Rotron MU 3A1, \(230 \mathrm{~V}, \mathrm{AC}, 14\)
watts, \(50 / 60 \mathrm{hz}\), guar- \(\$ 8.95\) anteed, \(41 / 2^{\prime \prime} \times 41_{2}^{\prime \prime} \times 112^{\prime \prime}\).

\section*{CRYSTAL OSCILLATORS}

Vectron type CO-23IT crystal freq. 4.9152, MHZ w/tuning option for accuracy of .0001\%. 11/2"x \(11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}\).R.F.E. 13.95

\section*{INCANDESCENT}

\section*{READOUT ASSEMBLY}

Readouts assembled of the 710 series modules. Character \(1^{\prime \prime}\) high w/lamps. Type No. 344. By Dialco.

\subsection*{1.50 EACH}

\section*{I.C. SOCKETS}

14-PIN Wire Wrap
14-PIN Low Profile. ..... 15
28-PIN Low Profile. ..... 35
40-PIN Low Profile. ..... 50

\footnotetext{
Minimum order \(\$ 25.00\). Items offered subject to prior sale. FOB, Brockton, Mass. Money order or check w/order. Shipping and handling add \(5 \%\). Shipments by parcel post or UPS. No CODs. Mass. residents add \(5 \%\) sales tax.
}

\section*{104 2 Parallel \& 2 Serial I/O Board}

Two serial ports, two par-
allel inputs, and two parallel outputs, plus an opt-
ional 134.5 BAUD for the serial interface to run most Selectrics make this
an extremely popular interface board.
Capable of supporting
EIA (RS232) and current E1A (RS232) and current The current loop can be
optically isolated from the power supply of the main-
frame.
The serial interfaces
have BAUD rates from 55 have BAUD rates from 55
BAUD to 9600 BAUD. Word length, parity even
and odd, and number of and odd, and number of
stop bits are DIP switch selectable.

\section*{}
portin
and
?nel

\section*{OBI Vector
Jump \&
Prototyping \\ OB1 Vector
Jump \&
Prototyping Board} Available at HOBBY WORLD

\section*{SB1 Music Synthesizer Board}

\section*{Enables the user to en} plex musical arrange ments. The user can de-
fine the attack and sustain, duration, pitch,
tempo, volume level, wave form, envelope shape, and ware is included
The software control is cated that the SB1 is well beyond the capabilities o competing microcomputer part harmonies? The softeight boards, for the mos complex of harmonies.
Docecocome

\section*{\(+2\)}

5

\section*{5}
\(\div=\)

1410 S81 bb
1444


\section*{Implement vector iump tor


 proded. \\  \\  \\ 5 \\  \\ MB8A IK/16K EPROM Board}


\section*{102 Parallel 1/0 Board}

An inexpensive \(1 / 100\) input port and one par-

 user toin dedicale the prol interface, as a small
ROM board, or as
ROM ROM board, or as tw
additional parallel ports. additional paraliel po
speclicetions Mon sum


The MB8A provides sock
ets to support up to 16
2708 EPROMs widely used EPROM in
we microcomputer in the microcomputer in-
dustry. The board dis ables in 1 K increments
simply by removing the The MB8A's Magic Map ping enables the user to
overlay RAM and ROM a the same address in any used with RAM boards equipped with Phantom Disable.
With the MB8A board
you can permanently store two or three large pro
grams such as BASIC. nemory capacty


\section*{}

\section*{}

\section*{XB1 Extender}

Board
Raises boards above the computer main frame for
easy access. With optional edge connector, the XB1 is no higher than standard
\(\mathbf{S}-100\) boards. \(\begin{array}{ll}1427 & \text { XB1 } \\ 1428 & \text { Connec }\end{array}\)

\section*{CB1 8080}

256 bytes of scratchpad
256 bytes of scratchpad.
RAM on board. Provisions
for 2 K of on-board 2708 for \(2 K\) of on-board 2708
EPROMs addressable a any 2 K boundary.) There is an 8 bit par-
allel input port, for key-
board, or up to 8 sensing board, or up to 8 sensing
lines for home or industrial control applications. Optional power-on jump
to on-board ROM eliminates the need for a front panel. And the board can
generate an MWRITE sig. generate an MWRITE sigWith a video board or small computer, but with the capability to expand
into a full-fledged \(\mathrm{S}-100\) into a full-fledged \(\mathbf{S - 1 0 0}\)
system. N
 ant

Video Board
An \%o controled vide interface board, With a video terminal. No other keyboard input and video display \({ }^{\text {th}} 2\) cursor, linefeed, carriage return, backspace, and clear-screen
are hardware controlled. The display is \(64 \times 16\), all upper case, and is sel-
ectable for white on black, or black on white. The or board features adjustable picture size and character width.
 whee on black dis. VB2 Vepepod basd




 \(1438 \quad\) VB2 kit VB-2 Bd.
MTI 15 Slot Mother Board A basic motherboard with provisions
ation resistors. Available with or without connectors. Specifications

\section*{MB6B 8K/ Dual 4K Static RAM Board} Dip switch addressing of lets the MB6B think like two 4 K boards, or one 8 K
board. The independent 4 K addressing allows the flexibility to meet varying
software memory needs. The MB6B is fully buf-
fered, and is 8080 , 8085 , fered, and is 8080, 8085;
and Z-80 compatible. The board can operate at
2 MHz or 4 MHz , and is compatible with DMA
(Direct Memroy Access) (Direct M
controllers.
\(\qquad\)




\section*{1401A MB6B a\&t}
\(\$ 183\)
1402 MB6B bb
1400A MB6B kit
1400B MB6B Kit \begin{tabular}{c} 
1401B \\
\(\substack{\text { MB6B.S. A\&T } \\
250 \text { N.S. }}\) \\
\\
\\
\hline
\end{tabular}

\section*{WORLD \\ CALL TOLL FREE: (800)-423-5387 CA, HI, AK: \\ COMPUTER ELECTRONICS}

\section*{SOFTWARE CASSETTES SOFTWARE CASSETTES}

Star Trek III
The most advanced version we've seen!
TRS-80 L2 16 K
Cat No. 1041 \$ 14.95

\section*{Backgammon}

You play against the computer! With hints on good! TRS.80 12.16 K
Sargon Chess
Winner of all tournaments!
6 levels of play, excellent
graphics.
R \(5-80\)
in
TRS-80 L2, 16 K
Cat
No . 1093 S19
Apple II, 16K
Apple II, 16 K
Cat No. \(1317 \mathrm{\$ 19.95}\)
Tarot
Excellent graphics, frighteningly accurate
TRS-80 \(11 / 24 \mathrm{~K}\)
Cat No. \(1042 \mathbf{5 K} .95\)
Air Raid
An arcade-type real time game of target practice. Excellent Graphics Cat No. \(1186 \$ 14.95\)
Microchess
Graphic Chessboard with Graphic Chessboand
3 levels of play
IRS-80 Cat No. 1182 's 19.9
Apple II
Apple II
Cat No. \(1183 \$ 19.95\)
Daily Biorhythm
Plots a 31 day graph cen-
lered on the day you Cered
compute
TRS-80 L1/2
Cat No. \(1051 \$ 5.95\)

Fortran Plus
By Microsoft! For TRS-80
12 with 32 K
and
single disk. Cat No. \(1341 \$ 340\)
Beat the House
4 Casino games: Blackjack rouletie, craps,
machine. Excellent
simumachine
lation.
\begin{tabular}{l} 
lation. \\
TRS-80 L2 \\
L2 \\
\hline 16
\end{tabular}
Cat No. \(1347 \$ 14.95\)
Apple II, 16 K
Cat No. 1349 \$14.95
Level III Basic
Gives your TRS-80 the power Disk commands, ad vanced editing, etc. TRS-80 L2, 16 K
Cat No. \(1332 \$ 49\)
Bridge Challenger You and dummy play against co computer in rether you or comp sets
Either
TRS-80 L2, 16K
Cat No. \(1195 \$ 14.95\)
Apple 16K
Cat No. \(1196 \$ 14.95\)
Machine
Language Monitor Allows you to interact dirmachine language level. 11pp manual.
TRS-80 L1/L2
Cat No. 1048
\(\$ 23.95\)
Electric Pencil The famous word proces-
sor for the TRS-80 L1/L2 \({ }^{16 K}\) Cat No. 1338 s95 L2 diskette version
Cat No. \(1338 \mathrm{D} \$ 145\)


51/4 Diskettes
\$27 box of 10
4 boxes for \(\$ 100\)
Cat No. Type Use
1147 Soft sector TRS-80, Apple
1147 Soft sector TRS.80.Apple
1148 Hard. 10 hole
1149 Hard. 16 hore Star
Mircopolis

\section*{\(8^{\prime \prime}\) Disks}
\$37 box of 10
3 boxes for \(\$ 100\)
- IBM compatible
- Individually certified

Cat No. 1145 Type 32-1000 Description
32 sector holes, 1 -index hole
Cat No. 1146 Type 34-1000 interchangeable with IBM32 3740, 3770, 3790, etc.

\section*{EDCE \\ CONNECTORS}
- Cold plated

Description
\(\mathrm{S}-100\), Imsai
S-100, Imsai type, Solder-
Cat No. 1376 Price \(\$ 4.00\)
S-100, Imsai type, wire-
Cat No. 1428 Price \(\$ 4.25\)
S-100, Altair-type, solder-
tail
Cil Cat No. 1388 Price \(\$ 4.00\) 86-pin Motorola type, wirewrap
Cat No. 1389 Price \(\$ 2.50\)

\section*{Ribbon Cable CLEARANCE SALE}
- Flat style, 28AWG
- Order by Cat No. 1167
\& conductors
\begin{tabular}{lr} 
Cond. & 10 ft \\
10 \\
26 & \(\$ 1.00\) \\
24 & 2.60 \\
34 & 3.40 \\
40 & 4.00
\end{tabular}

IC Sockets
Penny-A-Pin
Texas Instruments
- Solder tail
- Package quantities only Order by Cat No. 1117 and




Anadex Alphanumeric Printer \$925
Features 80 columns, 84 Features 80 columns, 84
lines per minute, super
high reliability high reliability, \(9 \times{ }^{9} 7\)
character font. Completely self contained, perfect for
terminals or as a stand terminals, or as as stand
alone printer. Prints comalone printer. Prints com.
plete 96 character ASCII plete Complete with interface for RS232C and \(20 / 60 \mathrm{~mA}\) current loop mode. Also Centronics
plug compatible interface plug compatible interface which accepts data in a
parallel bit, serial char-


Cat No. 1342 DP8000 much
Cat No. 1342 DP8000 Printer \(\$ 925\)
Cat No. \(1456 \quad 3000\) sheets 1-part paper \(\$ 31.50\)
Cat No. \(1457 \quad 1500\) sets 2-part paper \(\$ 40.50\)
Cat No. 14581000 sets 3 -part paper \(\$ 40.50\)

\section*{RECTIFIERS \& BRIDGES}

Order by Cat No, Voltage, and Current

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & RECT & RECT & RECT. & RECT. & RRIDGE & BRIDG & BRIDGE \\
\hline & \#1001 & \#1002 & \#1391 & \#1392 & \#1003 & \#1004 & \#1034 \\
\hline 50 V & . 05 & . 12 & . 36 & . 80 & . 30 & . 50 & 1.20 \\
\hline 100 V & . 06 & . 16 & . 50 & . 98 & . 45 & . 65 & 1.50 \\
\hline 200V & . 08 & . 20 & . 64 & 1.15 & . 60 & . 80 & 2.00 \\
\hline 400 V & . 10 & . 24 & . 78 & 1.35 & - & . & 2.50 \\
\hline 600 V & . 12 & . 30 & . 98 & 1.60 & - & - & \\
\hline 800 V & . 14 & . & 1.26 & 1.95 & - & - & - \\
\hline 1000 V & . 16 & - & 1.54 & 2.30 & - & . & - \\
\hline
\end{tabular}

Dept.K9 NORTHRIDGE, CA. 91324

\section*{encyclopeoía of mícrocompritíng}

\section*{4,600 pages}


That's the size of the world's most comprehensive guide to microcomputing. Over 2 years of Kilobaud Microcomputing . . . a virtual expanding encyclopedia of computing.

Back issues of Kilobaud Microcomputing are a gold mine of interesting articles. There's little to go stale in microcomputing . . . soitware, applications, great editorials. Start your encyclopedia today by sending for our FREE KB Microcomputing Back Issues Catalog. You'll see every issue available with descriptions of each issuc. Pick your favorites or get them all.
\(\square\) YES! Rush me Microcomputing's FREE Back Issues Catalog!
Name \(\qquad\)
Address \(\qquad\) Zip \(\qquad\)
City State \(\qquad\)


\title{
入MOVING?
}

Let us know 8 weeks in advance so that you won't miss a single issue of Kilobaud Microcomputing. Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.
\(\square\) Address change only
\(\square\) Extend subscription
\(\square\) Enter new subscription
\(\square 1\) year \(\$ 18.00\)
\(\square\) Payment enclosed (1 extra BONUS issue)
\(\square\) Bill me later Nume Call
\(\qquad\)
all
\(\qquad\)
\(\qquad\)
print NEW address here:
Name \(\qquad\) Call \(\qquad\)
Address
City \(\qquad\) State \(\qquad\) Zip
Kilobaud Microcomputing P.O. Box 997 • Farmingdale NY 11737

\section*{is HARD COPY STORAGE a problem?}

KILOBAUD MICROCOMPUTING, as thick as it is, is more like a floppy when it comes to standing on the bookshelf. Try the KILOBAUD MICROCOMPUTING Library Shelf Boxes . . . sturdy corrugated white dirt-resistant cardboard boxes which will keep them from flopping around. We have self-sticking labels for the boxes, too, not only for KILOBAUD MICROCOMPUTING, but also for 73 Magazine . . . and for
 CQ, QST, Ham Radio, Personal Computing, Radio Electronics, Interface Age, and Byte. Ask for whatever stickers you want with your box order. They hold a full year of KILOBAUD MICROCOMPUTING . . . or 73 Magazine. Your magazine library is your prime reference; keep it handy and keep it neat with these strong library shelf boxes. One box ( \(B X-1000\) ) is \(\$ 2.00,2-7\) boxes ( \(B X-1001\) ) are \(\$ 1.50\) each, and eight or more boxes (BX-1002) are \(\$ 1.25\) each. Be sure to specify which labels we should send. Have your credit card handy and call our toll-free order number 800-258-5473, or use the order card in the back of the magazine and mail to:
\(\qquad\)
peterborough nh 03458


Keep your KILOBAUDs from being lost or damaged in these handsomely-appointed binders with rich blue covers and gold leftering. Each binder holds 12 issues, making an EXCELLENT REFERENCE HANDBOOK. Several binders form a quality library you can be proud of.

Order yours today ...
only \(\$ 6.50\) each (BN1011) . . 2 for \(\$ 12.00\) (BN1012)
Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to:

KILOBAUD BINDERS - PETERBOROUGH NH 03458
Be sure to include check or detailed credit card information.

\section*{kb microcomputing book nook}
- HOBBY COMPUTERS ARE HERE! - BK7322-If you want to come up to speed on how computers work . . . hardware and software . . . this is an excellent book. It starts with the fundamentals and explains the circuits, the basics of programming, along with a couple of TVT construction projects, ASCII-Baudot, etc. This book has the highest recommendations as a teaching aid for newcomers. \$4.95. *
- THE NEW HOBBY COMPUTERS-BK7340-This book takes it from where Hobby Computers Are Here! leaves off, with chapters on Large Scale Integration, how to choose a microprocessor chip, an introduction to programming, low cost I/O for a computer, com puter arithmetic, checking memory boards, a Baudot monitor/edi tor system, an audible logic probe for finding those tough problems, a ham's computer, a computer QSO machine . . . and much much more! \$4.95*
- INTRODUCTION TO MICROPROCESSORS - BK1032-by Charles Rockwell of MICROLOG, is an ideal reference for the individual desiring to understand the hardware aspects of micropro cessor systems. Describes the hardware details of computer de vices in terms the beginner can understand, instead of treating the micro chip as a "black box." Specific systems are not described and programming is only briefly discussed. \$17.50 U.S. and Canada; \$20 elsewhere. *

- BASIC NEW 2ND EDITION-BK1081-by Bob Albrecht. Self-teaching guide to the computer language you will need to know for use with your microcomputer. This is one of the easiest ways to learn computer programming. \$5.95.*
- SCIENTIFIC RESEARCH INSTRUMENT'S BASIC SOFTWARE LIBRARY is a complete do-it-yourself kit, written in everybody's BASIC, immediately executable in ANY computer with 8K; no other peripherals needed. Volume I contains business and recreational programs and is 300 pages. Volume II is 260 pages and contains math, engineering, statistics and plotting programs. Volume III contains money managing, advanced business programs such as billing, A/R, inventory, payroll, etc. Volume IV contains general purpose programs such as loans, rates, retirement, plus games: Poker, Enterprise (take charge while Capt. Kirk is away), Football and more! Volume \(\mathbf{V}\) is filled with experimenters' programs, including games, pictures and misc. problems such as "logic." Volume I-LB1002-\& Volume II-LB1003-\$24.95* each, Volume III-LB1004-\$39.95*, Volume IV-LB1005-\& Volume V-LB1006-\$9.95* each.
- MICROPROCESSOR INTERFACING TECHNIQUES-BK1037-by Austin Lesea \& Rodnay Zaks will teach you how to interconnect a complete system and interface it to all the usual peripherals. It covers hardware and software skills and techniques, including the use and design of model buses such as the IEEE 488 or S100. \$9.95.*

-TTL COOKBOOK-BK1063-by Donald Lancaster. Explains what TTL is, how It works, and how to use it. Discusses practica applications, such as a digital counter and display system, events counter, electronic stopwatch, digital voltmeter and a digital tachometer. \$8.95.
- CMOS COOKBOOK-BK1011-by Don Lancaster. Details the application of CMOS, the low power logic family suitable for mos applications presently dominated by TTL. Required reading for every serious digital experimenter! \$9.95.*
- TVT COOKBOOK-BK1064 -by Don Lancaster. Describes the use of a standard television receiver as a microprocessor CRT terminal. Explains and describes character generation, cursor control and interface information in typical, easy-to-understand Lancaster style. \$9.95.*
-THE "COMPULATOR" BOOK-BUILDING SUPER CALCULATORS \& MINICOMPUTER HARDWARE WITH CALCULATOR CHIPS - BK1012-by R.P. Haviland, provides ideas, design info and/or printed circuit boards for calculator chip projects such as tape control of calculator electronic lock, dial-atelephone, etc. \$7.95.*
- BASIC COMPUTER GAMES-BK1074-Okay, so once you get your computer and are running in BASIC, then what? Then you need some programs in BASIC, that's what. This book has 101 games for you from very simple to real buggers. You get the games, a description of the games, the listing to put In your computer and a sample run to show you how they work. Fun. Any one game will be worth more than the price of the book for the fun you and your family will have with it. \(\$ 7.50\).*
- WHAT TO DO AFTER YOU HIT RETURN-BK1071-PCC's first book of computer games . . . 48 different computer games you can play in BASIC . . . programs, descriptions, many illustratlons. Lunar Landing, Hammurabl, KIng, Civel 2, Qubic 5, Taxman, Star Trek, Crash, Market, etc. \$10.95. *
- MICROCOMPUTING CODING SHEETS Microcomputing's dozen or so programmers wouldn't try to work without these handy scratch pads, which help prevent the little errors that can cost hours and hours of programming time. Available for programming is Assembly/Machine Language (PD1001), which has columns for address, instruction (3 bytes), source code (label, op code, operand) and comments; and for BASIC (PD1002) which is 72 columns wide. 50 sheets to a pad. \(\$ 2.39\).*

\section*{kb microcomputing book nook}
- PROGRAMMING IN PASCAL-BK1140-by Peter Grogono. The computer programming language PASCAL was the first language to embody in a coherent way the concepts of structured programming, which has been defined by Edsger Dijkstra and C.A.R. Hoare. As such, it is a landmark in the development of programming languages. PASCAL was developed by Niklaus Wirth in Zurich; it is derived from the language ALGOL 60 but is more powerful and easier to use. PASCAL is now widely accepted as a useful language that can be efficiently implemented, and as an excellent teaching tool. It does not assume knowledge of any other programming language; it is therefore suitable for an introductory course. \$9.95. *
- MICROPROCESSOR LEXICON-ACRONYMS AND DEFINI. TIONS-BK1040-compiled by the staff of SYBEX, is a convenient reference in pocket-size format. Sections include acronyms and definitions, part numbers and their definitions, S-100 signals; RS232 signals, IEEE 499 signals, microcomputers and microprocessors, JETDS summary (military) and a code conversion table. \$2.95.*
- INSTANT BASIC-BK1127-by Jerald R. Brown. For the personal computer enthusiast or the user of DEC's BASIC PLUS language, here is a new book to teach you BASIC. It teaches BASIC to beginners using interesting programming ideas and applications that will be easily understood by the home computer programmer. BASIC PLUS users know that the two languages are very similar, so this book can be used by them as well. This is an "active participation" workbook, designed to be used with your home computer so you can learn by doing! Ideas are slowly introduced in a nonmathematical context so the beginner can quickly learn good programming techniques. \$6.00.*
- MY COMPUTER LIKES ME . .
. WHEN I SPEAK BASIC-BK1039-An introduction to BASIC . . . simple enough for kids. If you
want to teach BASIC to anyone quickly, this is the way to go. \$2.00.*
- COMPUTER PROGRAMMING HANDBOOK - BK1014-by Peter Stark. A complete guide to computer programming and data processing. Includes many worked-out examples and history of computers. \$9.95. *
- MICROCOMPUTER DICTIONARY - BK1034 - This microcomputer dictionary fills the need to become quickly acquainted with the terminology and nomenclature of the revolution in computers. There is also a comprehensive electronics/computer abbreviations and acronyms sectlon. \(\$ 15.95\).*
- YOUR HOME COMPUTER-BK1172-by James White, Is an In-
 troduction to the world of personal microcomputing. This book tells you everything you want to know about home computing and gives the computer novice a painless introduction to microcomputer technology and terminology, beginning with what computers are and how they work. This basic book requires no prior knowledge or experience in electronics or computing. It provides information about home computer kits; guidelines for selecting and building your own microcomputer, how to use your home computer and what you can do with it; lists of computer stores, clubs, periodicals; and answers to many more of your questions about microcomputers and the jargon surrounding the personal computing scene today. \(\$ 6.00\). *
- HOW TO BUILD A MICROCOMPUTER-AND REALLY UNDERSTAND IT-BK7325-by Sam Creason. The electronics hobbyist who wants to build his own microcomputer system now has a practical "How-To" guidebook. This book is a combination technical manual and programming guide that takes the hobbyist step-bystep through the design, construction, testing and debugging of a complete microcomputer system. Must reading for anyone desiring a true understanding of small computer systems. \$9.95.*
THE BASIC HANDBOOK - BK1174-by David Lien. This book is unique. It is a virtual ENCYCLOPEDIA of BASIC. While not favoring one computer over another, it explains over 250 BASIC words, how to use them and alternate strategies. If a computer does not possess the capabilities of a needed or specified word, there are often ways to accomplish the same function by using another word or combination of words. That's where the HANDBOOK comes in. It helps you get the most from your computer, be it a "bottom-of-the-line" micro or an oversized monster. \$14.95.*
- SCELBI'S FIRST BOOK OF COMPUTER GAMES - BK1048 - Need a game for your 8008 or 8080 microprocessor? This book has three popular games: "Space Capture," "Hexpawn" and "Hangman." Complete flowcharts, logic description, program listing and instructions are provided. A must for the game freak! \$14.95.*
- MICROCOMPUTER PRIMER-BK1035-by M. Waite and M. Pardee. Describes baslc computer theory, explains numbering systems and introduces the reader to the world of programming. Describes the world of microcomputing in "real world" terminology. \$7.95.*
- THE STORY OF COMPUTERS-BK1056-by Donald D. Spencer, is to computer books what Dick and Jane is to novels elementary, gives the non-computerist a fair idea of what the hobbyist is talking about when he speaks computer lingo. Attempts to explain what computers are and can do to a spouse, child or any non-electronics-minded friend. \$4.95.*
*Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to:
Kilobaud Mlcrocomputing Book Department - Peterborough NH 03458. Be sure to Include check or detailed credit card information.
All orders, add \(\$ 1.00\) handling.
FOR CUSTOMER SERVICE CALL 603-924-7298

\section*{kb microcomputing book nook}
- PROGRAMMING THE 6502-BK1005—Rodnay Zaks has designed a self-contained text to learn programming, using the 6502. It can be used by a person who has never programmed before, and should be of value to anyone using the 6502. The many exercises will allow you to test yourself and practice the concepts presented. \(\$ 10.95^{*}\)
- 6502 APPLICATIONS BOOK-BK1006-Rodnay Zaks presents practical-application techniques for the 6502 microprocessor, assuming an elementary knowledge of microprocessor programming. You will build and design your own domestic-use systems and peripherals. Self-test exercises included. \$12.95*

- PIMS: PERSONAL INFORMATION MANAGEMENT SYSTEM - BK1009-Learn how to unleash the power of a personal computer for your own benefit in this ready-to-use data-base management program. \$9.95.*
- HOW TO SELL ANYTHING TO ANYBODY - BK7306-According to The Guiness Book of World Records, the author, Joe Girard, is "the world's greatest salesman." This book reveals how he made a fortune-and how you can, too. \$2.25.*

- 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK-BK1102-If you have been spending too much time developing simple routines for your 8080, try this new book by Scelbi Computing and Robert Findley. Desribes sorting, searching, and many other routines for the 8080 user. \(\$ 9.95\).*
- 6800 SOFTWARE GOURMET GUIDE AND COOKBOOK-BK1075-Like its culinary cousin, The 8080 Gourmet Guide, this new book by Scelbi Computing and Robert Findley describes sorting, searching and other routines-this time for the 6800 user. \$10.95.*
- ADD 'N STAC-BX1003-If' you've got programs lying around and want them organized in easy-to-locate fashion Add 'N Stac is the answer. Each unit stores eight cassettes. Each module locks together with the next and grows with your collection. Build yourself a software library with Add ' \(N\) Stac by ordering from the Book Nook. As your library grows you'll need more of these handy units so order more than one today. Several colors are available and you can mount them to your wall, desk, table or keep them loose for taking with you. Colors and prices are: Smoke \(\$ 3.00^{*}\); Black, Dark Blue, Orange, Brown, White, Red \$2.50.*

- AN INTRODUCTION TO MICROCOMPUTERS, VOL. 0-BK1130-The Beginner's Book-Written for readers who know nothing about computers - for those who have an interest in how to use computers - and for everyone else who must live with computers and should know a little about them. The first in a series of 4 volumes, this book will explain how computers work and what they can do. Computers have become an integral part of life and society. During any given day you are affected by computers, so start learning more about them with Volume 0. \$7.95.*
- VOL. I-BK1030-Dedicated to the basic concepts of microcomputers and hardware theory. The purpose of Volume I is to give you a thorough understanding of what microcomputers are. From basic concepts (which are covered in detail), Volume I builds the necessary components of a microcomputer system. This book highlights the difference between minicomputers and microcomputers. \$9.50. *
- VOL. II-BK1031 (loose leaf)-\$25.00*; BK1040 (with binder)- \(\$ 30.00^{*}\)-Contains descriptions of individual microprocessors and support devices used only with the parent microprocessor. Volume II describes all available chips.
- VOL. III-BK1132 (loose leaf)-\$15.00*; BK1133 (with binder)- \(\$ 20.00\). . Contains descriptions of all support devices that can be used with any microprocessor.
- FUN WITH COMPUTERS AND BASICBK1021 - by Donald D. Spencer, contains an easy-to-understand explanation of the BASIC Programming Language and is intended for persons who have had no previous exposure to computer programming. Over half the book is devoted to problems using games, puzzles, and mathematical recreations. A superior book for selfteaching and learning computer programming. \$6.95.*

- ADVANCED BASIC-BK1000-Applications and problems by James Coan is for those who want to extend their expertise with BASIC. Offers advanced techniques and applications. \$7.95.*
- PAYROLL WITH COST ACCOUNTINGIN BASIC-BK1001-by L. Poole \& M. Borchers, includes program listings with remarks, descriptions, discussions of the principle behind each program, file layouts, and a complete user's manual with step-by-step instructions, flowcharts, and simple reports and CRT displays. Payroll and cost accounting features include separate payrolls for up to 10 companies, time-tested interactive data entry, easy correction of data entry errors, job costing (labor distribution), check printing with full deduction and pay detail, and 16 different printed reports, including W-2 and 941. \$12.50.*
- SOME COMMON BASIC PROGRAMS-BK1053-published by Adam Osborne \& Associates, Inc. Perfect for non-technical computerists requiring ready-to-use programs. Business programs, plus miscellaneous programs. Invaluable for the user who is not an experienced programmer. All will operate in the stand-alone mode. \(\$ 9.50\) paperback.*
- THE SECRET GUIDE TO COMPUTERS Parts 1, 2 and 3 by Russ Walter. Part One describes computers in general, and after reading for ten minutes you will be writing simple BASIC programs! Part Two discusses computer applications. It's one thing to master the syntax of the language such as BASIC and another to solve problems using the new tool. Part Three describes programming languages. Ever heard of APL and QLISP? BASIC is not the only language used to program computers. 7th Edition. Part I-BK1050-\$2.75*; Part II-BK1051-\$2.50*; Part III-BK1052 -\$3.50.*
* Use the order card in the back of this magazine or itemize your order on a separate piece of paper and mail to: Kilobaud Microcomputing Book Department - Peterborough NH 03458. Be sure to include check or detailed credit card information. All orders, add \(\$ 1.00\) handling.

KB BOOK HOOK ORDER FORM
\begin{tabular}{|l|l|l|l|l|}
\hline Cty. & Cat. \# & Description & Unit Price & Total \\
\hline & & & & \\
\hline & & & Add \$1 Handling & \\
\hline
\end{tabular} \(\square\) Master Charge \(\square\) VISA \(\square\) American Express Credit card \#__ Exp. date___ Signature
Name Address \(\qquad\) kiloboud
City State Zip MICROCOMPUTING \(^{\text {T.M. }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline A90 & Aardvark Technical Services. . . 139 & H5 & Heath . . . . . . . . . . . . . . . . . . . . 95 & P59 & Percom Data Company, Inc. . 16, 90 \\
\hline A88 & AB Computers.............. . 133 & H25 & Hobby World. . . . . . . . . . . 186, 187 & P52 & The Peripheral People. . . . . . . 159 \\
\hline A75 & ACS Service. . . . . . . . . . . . . . . . 17 & H45 & Houston Micro-Comp. Tech. . . 158 & P39 & Personal Software. . . . . . . 45, 135 \\
\hline A73 & Addmaster Corp. . . . . . . . . . . . 134 & 142 & Inmac. . . . . . . . . . . . . . . . . . . 151 & P4 & Polymorphic Systems. ......... 16 \\
\hline A38 & Advanced Computer Prod. . . . 162 & 124 & Innovative Technology. ....... 135 & P60 & Practical Applications........ 153 \\
\hline A102 & Adventure International. . . . . . . 145 & 132 & Instant Software. . . 81, 86, 87, 125 & P21 & Priority One. . . . . . . . 180, 181, 184 \\
\hline A101 & Alpha Byte Storage. . . . . . . . . . 139 & 135 & Integral Data Systems, Inc. . . . . 20 & P61 & Program Design, Inc. .......... 18 \\
\hline A98 & Bill Archbold. ................. . 145 & 113 & Integrand. . . . . . . . . . . . . . . . . 152 & P48 & Programma International, Inc. . . 33 \\
\hline & Aresco . . . . . . . . . . . . . . . . . . . 134 & 19 & Integrated Circuits Unlimited. . 182 & P55 & Pygmy Programming. ........ . 145 \\
\hline A89 & August Automation. . . . . . . . . 107 & 121 & Intertec Data Systems. . . . . . . . . . 3 & Q9 & Quasar Data Products........ 110 \\
\hline A71 & Automated Simulations. . . . . . 142 & & Intersystems, Inc. . . . . . . . . . . 19 & Q3 & Quest Electronics........... 161 \\
\hline B51 & Benchmark Computers. . . . . . . 145 & J6 & Jade Computer Prods. ... 174, 175 & R24 & Racet Computes. . . . . . . . . . . . . 27 \\
\hline B4 & B \& F Enterprises. . . . . . . . . . . . 172 & J1 & Jameco Electronics. . 176, 177, 179 & & Radio Shack. . . . . . . . . . . . . 16, 29 \\
\hline B50 & Bluebird's Inc. . . . . . . . . . . . . . . 99 & J13 & J.E.S. Graphics. . . . . . . . . . . . . 168 & R34 & Radio Shack Authorized Sales \\
\hline B33 & The Bottom Shelf, Inc. . . . . . . . . 77 & J12 & JPC Products. . . . . . . . . . . . . . 153 & & Center....................... . 143 \\
\hline B43 & Buss . . . . . . . . . . . . . . . . . . . . 150 & K14 & Key Electronics. . . . . . . . . . . . 144 & & Rainbow Computing, Inc. . . . . 147 \\
\hline C128 & Cecdat, Inc. . . . . . . . . . . . . . . . . 147 & & Kilobaud. . . . . . . . . . . . . . . . . 83-85 & R8 & Ramsey Electronics. ......... 159 \\
\hline C116 & CGRS Microtech. . . . . . . . . . . . . 18 & 122 & Larks Electronics \& Data. . . . . . 144 & R32 & REAL-LIFE Simulations....... 168 \\
\hline C122 & CompuCover................. . 145 & \(\underline{L}\) & Leedex Corp................. . 115 & & Recreational Programmer. .... 126 \\
\hline C109 & CompuSoft Publishing. . . . . . 141 & L19 & Level IV Products, Inc. . . . . . . . . 152 & R20 & RNB Enterprises. . . . . . . . 164, 165 \\
\hline C64 & Computer Corner of NJ. . . . . . . 134 & L16 & Lifeboat Associates. . . . . . . . . 125 & R7 & Rondure Company............ 147 \\
\hline C146 & The Computer Exchange. ..... 145 & \(\underline{L 5}\) & The Logic Store. . . . . . . . . . . . . 141 & S106 & Sara Tech Electronics, Inc. .... 128 \\
\hline & The Computer Factory........ 142 & \(\underline{L 1}\) & Long Island Computer General & S1 & Scelbi Publications............ 63 \\
\hline C111 & Computer Forum. . . . . . . 143, 168 & & Store........................ . . 139 & S107 & SDX.......................... . 139 \\
\hline C104 & Computer Information Exch... 133 & M 77 & Madhatter Software. ......... . 127 & S101 & Semiconductor Surplus. . . . . . . 135 \\
\hline C80 & Computer Port. . . . . . . . . . . . 129 & M88 & The Mail Mart. . . . . . . . . . . 135, 149 & S76 & Steven E. Shaw, P.E.. . . . . . . . . 149 \\
\hline C135 & The Computer Shack. . . . . . . . . . 144 & M17 & Marketline, Inc. . . . . . . . . . . . 128 & S74 & 68 Micro Journal. . . . . . . . . . . . . 168 \\
\hline C134 & The Computer Shop. . . . . . . . . . 139 & M107 & McClain \& Associates, Inc. . . 134 & S105 & 6502 Users Notes. . . . . . . . . . . . . 134 \\
\hline C147 & The Computer Stop. .......... . 148 & M93 & Metamics, Inc. . . . . . . . . . . . . . 168 & S51 & Small System Software. . . . . . . . 50 \\
\hline & Computer Systems Design.... 126 & M74 & Micro. . . . . . . . . . . . . . . . . . . . 168 & S97 & The Software Association. . . . 148 \\
\hline C149 & Computer Textile. . . . . . . . . . . . 20 & M103 & Micro Applications Group. ... 107 & S75 & SP Electronic Sysems. . . . . . . . 145 \\
\hline C94 & The Computerist. . . . . . . . . . . . 102 & M89 & Micro Architect. ............. 134 & S104 & Super Brain, Inc. . . . . . . . . . . . . 18 \\
\hline C81 & Computers One. . . . . . . . . . . . . . . 74 & M30 & Micro Computer Devices. . . . . 140 & S61 & Supersoft. ............... . . 133, 152 \\
\hline C86 & Computrex. . . . . . . . . . . . . . . . . 142 & M106 & Micro Computer Peripherals. . 156 & S42 & Sybex, Inc. . . . . . . . . . . . . . . . . . . 107 \\
\hline C114 & Computronics. . . . . . . . . . . . . . . 41 & M73 & Micromail. . . . . . . . . . . . . 80, 126 & T37 & Tano Corp. . . . . . . . . . . . . . . . . . . 67 \\
\hline C107 & Connecticut microComputer. . 149 & M95 & Micro Management Systems. . 139 & T57 & Taranto \& Associates. . . . . . . . . 47 \\
\hline C124 & Cost Effective Computer Ser. . . 148 & M105 & Micro Matrix. . . . . . . . . . . . . . . . 168 & T11 & Tarbell Electronics....... 142, 146 \\
\hline C108 & The CPU Shop. . . . . . . . . . . . . . . 51 & M54 & Micro-Mega. . . . . . . . . . . . . . . . 73 & T68 & Tecmar, Inc............... 20, 111 \\
\hline C148 & Cryptext Corp. . . . . . . . . . . . . . . 20 & M81 & Micro Products Unltd. ........ . 139 & T26 & Telecommunications Serv. .... 145 \\
\hline C123 & Cuddly Software. . . . . . . . . . . . . . 99 & M67 & Microsette Co. . . . . . . . . . . . . . 135 & T65 & 3G Co., Inc. .................. . 149 \\
\hline C145 & Cursor Magazine. . . . . . . . . . . . 141 & M44 & Micro Technology Unitd. . . . . 103 & T56 & TNW Corp................... . 141 \\
\hline C132 & Custom Electronics. . . . . . . . . . 144 & M108 & Microtel, Inc................. . 119 & & Tora Systems Limited. . . . . . . . 128 \\
\hline C129 & Cybernetics, Inc............... 37 & M61 & Micro World Computer Store. . 134 & T41 & Total Information Services, Inc. \\
\hline D43 & Dr. Daley...................... 145 & M104 & Micro-Z Company. ........... 141 & & .......................... 144, 146 \\
\hline D50 & Data/Print. . . . . . . . . . . . . . . . . 106 & M94 & Mid East Micro............... 148 & T46 & Transition Enterprises, Inc. . . . 119 \\
\hline D40 & Datasearch . . . . . . . . . . . . . . . . 143 & M42 & Midwest Digital.............. 135 & U12 & Ulitimate Computer Systems. . . 139 \\
\hline D59 & Davilyn Corp................. . 144 & M70 & Midwest Scientific. . . . . . . . . . . CIV & V19 & VR Data Corporation. ......... 146 \\
\hline D28 & Deltroniks . . . . . . . . . . . . . . . . 110 & M39 & Mikos . . . . . . . . . . . . . . . . . . 173 & & Wallen Electronics. . . . . . . . . . . 185 \\
\hline & Digital Dynamics, Inc. . . . . . . 125 & M6 & Mini Micro Mart. . . . . . . . 170, 171 & W22 & Wameco, Inc. ................. 173 \\
\hline & Digital Research Corp. . . . . . . . 169 & M98 & Minnesota Micro Systems. ... 138 & W20 & WEB Associates. ......... . 134, 154 \\
\hline & Digital Research Parts. . . . . . . . 54 & M83 & Multi Business Computer Systems & W31 & Weldon Electronics. ........... 156 \\
\hline D58 & Digital Sport Systems. . . . . . . . . 18 & & 168 & W21 & Western 1/0................... 98 \\
\hline D60 & Digital Video Systems. . . . . . . . 141 & M87 & Mumford Micro Systems. . . . . 144 & W29 & West Side Electronics. ........ 143 \\
\hline E34 & Ecosoft....................... . 150 & & National Radio Institute. . . . . . 155 & W10 & Windjammer................. . 163 \\
\hline E37 & 80-US Journal. ................ 151 & N12 & NEECO....................... 157 & W16 & World Wide Electronics. . . . . . . 135 \\
\hline E36 & Electronic Specialists, Inc. . . . 144 & N15 & Netronics R \& D Ltd. . . . . . . . . . 103 & X4 & Xitex Corp. ................... . . 66 \\
\hline E21 & Electronic Systems. . . . . . 166, 167 & N7 & Newman Computer Exchg. .... 183 & & X \& Y Enterprises. . . . . . . . . . . . . 135 \\
\hline E50 & Escon Products, Inc. . . . . . . . . 128 & N24 & Northeast Expositions. ........ 59 & & Young's....................... . . 135 \\
\hline E49 & Eventide Clockworks, Inc. . . . . . 23 & N9 & North Star Computers. . . . . . . . . 15 & & Kilobaud Microcomputing \\
\hline E48 & Exatron....... . . . . . . . . . . . . . . 13 & N25 & Northwest Analytical. ........ 20 & & . . . . . . . . \(74,83-85,188-194\) \\
\hline F15 & FMG Corp. . . . . . . . . . . . . . . . . 154 & 01 & Ohio Sclentific. . . . . . . . . . . . . 8-11 & & \\
\hline F18 & Fuller Electronics. . . . . . . 139, 141 & 016 & Oklahoma Computer Co. . . . . . . 134 & & \\
\hline F19 & Futureworld. . . . . . . . . . . . . . . . 18 & 05 & OK Machine \& Tool. . . . . . . . . . CIII & & \\
\hline G34 & Allen Gelder. . . . . . . . . . . . . . . 156 & 02 & On-Line. . . . . . . . . . . . . . . . . . . 153 & & \\
\hline G32 & Giuli Microprocessing, Inc. . . . . 20 & 010 & Optimal Technology, Inc. . . . . . 150 & & \\
\hline G28 & Gimix, Inc. . . . . . . . . . . . . . 141, 156 & 08 & Orthon Computers. . . . . . . . . . . 144 & & \\
\hline G33 & Global Parameterrs. . . . . . . . . . 20 & 09 & Otto Electronics. . . . . . . . . . . . . 151 & & \\
\hline G4 & Godbout Electronics. . . . . . . . . 178 & P9 & PAIA. . . . . . . . . . . . . . . . 138, 154 & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{-Reader Service inquiries not honored. Please contact advertiser directly.}} \\
\hline H37 & Hayden Book Company....... 159 & P7 & Percom Data Company, Inc. ... CII & & \\
\hline H43 & Hayes Data Systems, Inc. . . . . . 50 & P54 & Percom Data Company, Inc. . . . 91 & & \\
\hline
\end{tabular}
 96015－usnjay
H noh Jelf oo of IEYM LLOLY日


 Id JISV日 иommoう awos ESOly

 \(00 \cdot 2 \$-1-\times 09\) Hous 0001×8 G6．015－y009y00 8 SLOLYE
 OS＇Es－III נed ZSOLY8 ：OS＇Z\＄－II ed LSOLYA＇SL＇ZS－I Jed OSOLY8 sıainduoj OL eping jonoes eul

 ค 800187 ＇ C 6 • \(\downarrow \$-1 \cdot 10 \wedge 200187\) রлeлa！өлемй गIS甘8 Iuəunatsul पวлeasay ग！！！luelos S6＇15－somes
 ol\＄－2059 eul bu！wuenbold s0018x \(96.6 \$\)
7VOSVd u！Bulwmesbold 0bllye S6．6\＄－weısर́s juemabeuew
 0S＇21\＄－ \(515 \forall 8\) U！－6u！ inovay isoj 4 S6＂\＄－sjo
dwo弓 KqqOH MaN eप। OฤELY्रह 00 ZS－JISVg yeadS I UeपM aw sex！7 joindwoj KW 6e01＞18 S6． \(2 \$\)－suo！n！u！jag pue swivuod


 S6．SI\＄－Kievol！ seindmoっosगlW \＆OIVR 6と＇こ§－つISシ日－z0010d e．z\＄－əbenbue7 əu！पכew／kiquas \(\gamma\)－looldd sleeus סu！poj pneqo！！ әлачм
SIB OZS ：\(\forall\) SN OG：LIS－sjosser Idoدग！of पo！lonpostul zeotys
 00＇sis－（jea｜asool）III＇IO＾टEIIM日
 ：00＇GZS－（！eal esool）II＇10＾LEOLY8 ．OS＇6\＄－1＇10＾OEOITY ：G6 L\＄－0＇1O＾OEIIY8
 \(00.9 \$\)－JISVg Jueısul IEItry sて＇Z\＄一KpoqKuも
Buluikū \｜⿸厂 OL MOH goc 00 SI\＄－siaind
 S6．ซ\＄－iӨл⿰弓
\(\forall\) ssandmoう кqqOH 乙टعLy्र 96．9§－つISV8
sseindwo弓 4i！M uny LZOIXg \(96.01 \$-y 009 \times 10058\)
 9665－y009 EH Bulwmesbosd seindwos tlolys

IM esempieh joindwosiulw sıojeinjej jadns 6u！p！ing－y00日


S3IVIS O3IINN 3H1 NI 0ヨา｜＊W」人甘甘SSヨコヨN 3OVISOd ON
wi SNIIndWOOOXOIW
pnoqol！ 1

3ヨSSヨyOO＊ 18 OIVd 38 רาIM 39マ1SOd


ם४丬О 人ㄱdヨy SSヨNISn9 ｜｜III｜

K！！ ssəjpp \(\forall\) әuen
 \＃pıej t！per刀


\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
：\({ }^{2} 301\) \\
：6u！।риен 00\％1\＄ppV
\end{tabular}} \\
\hline & & & & \\
\hline 18101 & －oud liun & บo！ndurseo & ＊ 0 O｜ersej & 10 \\
\hline
\end{tabular}



awen

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 21 & 891 & ヤOLS & ๑Zप & 8＞d & 10 & EOLW & ELW & てZ7 & 乙દ। & ટદ๑ & \(12 \exists\) & SカレO & 6015 & ๕ย๕ \\
\hline & カX & S91 & LOLS & OZy & 68d & GZN & 86W & 0 LW & 127 & ヤて। & 825 & 090 & SELO & 8015 & ¢ \\
\hline & こX & LS। & L6S & 84 & LZd & 七ZN & S6W & L9W & 027 & してし & ャワ & 690 & ヤع1O & LOLO & 201＊ \\
\hline & LEM & 9S1 & 9LS & \(\angle \mathrm{C}\) & 6 d & SIN & ๑6W & 19W & 617 & E1 & 61」 & 8S0 & てعเつ & ヤ015 & LOLV \\
\hline & 6ZM & \(9 \downarrow 1\) & GLS & 60 & Ld & ZIN & E6W & ૪GW & 917 & 61 & 81」 & OGO & 6てเつ & ャ6 & 86V \\
\hline & こてM & \(\downarrow \downarrow 1\) & － 2 S & \(\varepsilon 0\) & \(\square d\) & 6 N & 68W & カカW & カレメ & Sb ¢ & Sly & £ \(\square\) & 8てเつ & 985 & 06V \\
\hline & IZM & LE1 & 195 & 19d & 910 & LN & 88W & てヵW & ELr & EヵH & 093 & 0ヤロ & ャてเつ & 180 & 68V \\
\hline & OZM & 921 & LSS & 09d & 010 & 801W & L8W & 6EW & で「 & LEH &  & 8てO & とてเつ & \(08 \bigcirc\) & 88V \\
\hline & 91M & 111 & てヤS & 6Sd & 60 & LOLW & E8W & 0¢W & 9 C & SZH & 8ャヨ & 6ヵレ & ててเつ & ¢90 & G \(\angle \forall\) \\
\hline \(\varepsilon\) & OLM & LOLS & 15 & GSd & 80 & 90LW & 18W & LIW & 15 & SH & L®ヨ & 8ャレ0 & 9110 & 198 & \(\varepsilon \angle \forall\) \\
\hline & 61． & 901S &  & ヤGd & SO & SOLW & LLW & 9W & で & ヤ¢๑ & 98ヨ & くカレ & ヤレしつ & OSg & L \(2 \forall\) \\
\hline SNII DWWOSOASIN & でへ & SOLS & 乙દy & 2Sd & 20 & 万OLW & － \(2 W\) & ¢て7 & GEl & ยะ๑ & ヤ®ヨ & 9ャレン & いレ」 & \(\varepsilon \triangleright 9\) & 8\＆ \\
\hline
\end{tabular}



व女甘כ 人7dヨy ヨコI＾y


\section*{NUTS}

\section*{Inventory}

Are you having trouble keeping the right nuts and bolts in stock? Since even a simple mistake can cost you time and money, a good inventory system should do more than just count parts. It should tell you exactly what you need, when you need it, where to get it, and how much it will cost.
The MSI Inventory System Seven enables you to maintain a versatile data base for controlling inventory. It lists part number, description, quantity on hand, vendor, cost, selling price, optional pricing, usage levels for previous month, present month, and year-to-dare, and much more.

When quantity on hand items reach minimum levels, the System Seven compiles an automatic reorder list. This list can be generated by specific vendor as well as a complete listing of all materials to be ordered.

In addition to the item listing, the Inventory System Seven "bill of materials" provides you with a complete inventory of items used in the manufacture of subassemblies and complete products. It also contains other cost items such as labor costs, total raw materials costs, and miscellaneous costs.

The MSI Inventory System Seven is built around the versatile MSI 6800A Computer with 56 K of RAM. An integral dual mini-floppy memory gives you an additional 630K of memory and makes

\section*{Problems?}
inventory control fast and efficient. The System Seven will interface with any industry standard CRT, and you have the option of both a "daisy wheel" word processor for high quality document preparation and a dot matrix printer for high speed production.

The System Seven can be expanded to handle all your data processing needs or you can select one of nine other MSI systems now available for business, industrial, scientific, educational, and personal applications.

If you need more than just a nuts and bolts inventory system, we have more information about how the Inventory System Seven can solve your pro blems economically.

\section*{MSI Inventory System Seven}

\title{
TlidwestSeientific
}

220 W. Cedar, Olathe, Kansas 66061, (913) 764-3273 TWX 9107496403 (MSI OLAT), TELEX 42525 (MSI A OLAT)```


[^0]:    

[^1]:    Please send me the following programs at \$99.95 each:

    | Accounts Payable |  |  |
    | :--- | :--- | :--- |
    | Accounts Receivable |  |  |
    | General Ledger (add $\$ 50$ for Cash Journal) |  |  |
    | Payroll |  |  |
    | Inventory Control |  |  |
    | Add \$3 per order for handling |  |  |
    | 6\% tax (California only) |  |  |
    | AMOUNT ENCLOSED |  |  |

    If you need the books, add $\$ 15$ each.
    Mastercharge $\square$ Visa $\square$ No.
    Expires
    $\square$ Please send me information on other
    Taranto business programs

    Company Name
    Address
    City/State/Zip

    Post Office Box 6073, San Rafael CA 94903 • (415) 472-1415

[^2]:    CBIOS $1 / 0$ SYSTEM
    VISTA COMPUTERS, SOLOS VERSION 2 DRIVES
    BY FR. THOMAS MCGAHEE, DON BOSCO TECH

    1. PATERSON, N.J. 07502 MAY 30, 1978

    3 THIS CBIOS ASSUMES A STANDARD SOLOS SYSTEM SUCH AS A SOL-2A,
    3 OR AN EQUIVALENT SYSTEM WITH SOLOS SOFTWARE AND VDM.
    IT SUPPORTS A NUMBER OF UNI QUE FEATURES, SUCH AS THE ABILITY
    B TO CHANGE $1 / O$ DRIVERS AT ANY TIME, SINGLE-KEY WARM BOOT,
    S SINGLE-KEY CTR U. AND A DELETE MODE THAT BACKSPACES ON THE S VDM SCREEN, BUT PERFORMS IN THE USUAL CP/M WAY ON TTY.
    (VISTA DISK ROUTINES, WHICH ARE COPYRIGHTED, ARE NOT SHOWN).
    

    SINP EQU OCEIFH SOLOS INPUT ROUTINE
    SOUT EOU ECOIGH BOLOS OUTPUT ROUTINE
    STATFLAG EOU OC8IAH BFOR CONS. STATUS
    LCHAR EOU OC8ISH SAVES CHAR. AFTER CONST IS CALLED.
    ESCFLAGEOU OCBI2H BESCAPE 'FLAG"
    DELFLAG EQU OCBI3H BDELETE •FLAG. (SOLOS RAM)

[^3]:    North Star Horizon II w/16K memory.
    Extra 16K memory board.
    Solid State Music Video Interface board, VB1B.
    Hitachi 17 inch Monitor, Model VM-172AU. NEC Spinwriter, Model 5520.
    CP/M on 5 inch disk, Lifeboat Associates, 164 W. 83rd St., New York NY 10023.
    Electric Pencil II.

[^4]:    MICROSETTE CO. - M67 777 Palomar Ave. . Sunnyvale, CA 94086

[^5]:    Program for the Determination of Adult Energy Reguirements
    Responses should be a capital letter or number followed by a carriage return (CR).
    Are you a Female (F) or a Male (M) - CR? F
    What is your age in years - CR? 28
    Measurements may be in $\mathrm{kg} / \mathrm{cm}$ (Metric) or $\mathrm{lb} / \mathrm{in}$ (English).
    Do you use Metric (M) or English (E) - CR? E
    What is your weight (in light clothing) - CR? 145
    What is your Height (cm or in, w/o shoes) - CR? 66.5
    What is your present Ideal Weight - CR? 140
    How many hours per average day are spent doing the following: Sleeping - CR? 8
    Lying Down Awake - CR? 1
    Sitting or Standing (e.g. reading or waiting) - CR? 12
    Light Activity (e.g. cooking or walking) - CR? 2
    Moderate Activity (e.g. active work) - CR? 1
    Heavy Activity (e.g. running or climbing) - CR? 0
    Average diets have about 15 percent of their Calories as Protein. What percentage of your Caloric intake is Protein - CR? 25
    Are you Pregnant ( $Y$ or $N$ ) - CR? $Y$
    How many weeks Postconception are you - CR? 15
    Your calculated Basal Metabolic Rate is 1759 Calories. Your calculated average daily Caloric requirement is 2516 . Your stated Ideal Weight minus actual Weight is:
    Typical Ideal Weight for your Height is 64.62 kg or $142.3 \mathrm{lb}+/-108$ This includes a 2.27 kg or 5 lb addition for pregnancy of 15 wks . Do you wish a diet schedule ( $Y$ or N) - CR? Y
    An of ten recommended goal for weight change is $0.5 \mathrm{~kg}(1 \mathrm{lb}) / \mathrm{wk}$. How many weeks do you wish to make the diet for? 5
    Daily intake should be $2516+-543.3=1973$ Calories for $-.454 \mathrm{~kg} / \mathrm{wk}$. This assumes that your Caloric intake is still 25 \% protein. Pregnancy will alter these results.

    Sample run.

